首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water mobility, denaturation and the glass transition in proteins   总被引:1,自引:0,他引:1  
A quantitative mechanism is presented that links protein denaturation and the protein-water glass transition through an energy criterion for the onset of mobility of strong protein-water bonds. Differences in the zero point vibrational energy in the ordered and disordered bonded states allow direct prediction of the two transition temperatures. While the onset of water mobility induces the same change in heat capacity for both transitions, the order-disorder transition of denaturation also predicts the observed excess enthalpy gain. The kinetics of the water and protein components through the glass transition are predicted and compared with dielectric spectroscopy observations. The energetic approach provides a consistent mechanism for processes such as refolding and aggregation of proteins involved in protein maintenance and adaptability, as the conformational constraints of strong water-amide bonds are lost with increased molecular mobility. Moreover, we suggest that the ordered state of peptide-water bonds is induced at the point of protein synthesis and could play a key role in the function of proteins through the enhancement of electronic activity by ferroelectric domains in the protein hydration shell, which is lost upon denaturation.  相似文献   

2.
The dynamical transition of proteins,concepts and misconceptions   总被引:1,自引:0,他引:1  
The dynamics of hydrated proteins and of protein crystals can be studied within a wide temperature range, since the water of hydration does not crystallize at low temperature. Instead it turns into an amorphous glassy state below 200 K. Extending the temperature range facilitates the spectral separation of different molecular processes. The conformational motions of proteins show an abrupt enhancement near 180 K, which has been called a "dynamical transition". In this contribution various aspects of the transition are critically reviewed: the role of the instrumental resolution function in extracting displacements from neutron elastic scattering data and the question of the appropriate dynamic model, discrete transitions between states of different energy versus continuous diffusion inside a harmonic well, are discussed. A decomposition of the transition involving two motional components is performed: rotational transitions of methyl groups and small scale librations of side-chains, induced by water at the protein surface. Both processes create an enhancement of the observed amplitude. The onset occurs, when their time scale becomes compatible with the resolution of the spectrometer. The reorientational rate of hydration water follows a super-Arrhenius temperature dependence, a characteristic feature of a dynamical transition. It occurs only with hydrated proteins, while the torsional motion of methyl groups takes place also in the dehydrated or solvent-vitrified system. Finally, the role of fast hydrogen bond fluctuations contributing to the amplitude enhancement is discussed.  相似文献   

3.
The conformational transitions of calcium binding protein parvalbumin III from carp muscle were studied by scanning calorimetry, potentiometric titration and isothermal calorimetric titration. Changes of Gibbs energy, enthalpy and partial heat capacity were determined. The removal of calcium ions by EDTA is accompanied by 1) a heat absorption of 75 +/- 10 kJ per mole of the protein, 2) a decrease in the Gibbs energy of protein structure stabilisation of about 42 kJ mol-1 and 3) a decrease in thermostability by more than 50 K. The protonation of the acidic groups leads to a loss of calcium followed by denaturation, while the pH of the transition strongly depends on calcium activity. The enthalpy and heat capacity changes at denaturation are comparable with the values observed for other compact globular proteins.  相似文献   

4.
The heat capacity plays a major role in the determination of the energetics of protein folding and molecular recognition. As such, a better understanding of this thermodynamic parameter and its structural origin will provide new insights for the development of better molecular design strategies. In this paper we have analyzed the absolute heat capacity of proteins in different conformations. The results of these studies indicate that three major terms account for the absolute heat capacity of a protein: (1) one term that depends only on the primary or covalent structure of a protein and contains contributions from vibrational frequencies arising from the stretching and bending modes of each valence bond and internal rotations; (2) a term that contains the contributions of noncovalent interactions arising from secondary and tertiary structure; and (3) a term that contains the contributions of hydration. For a typical globular protein in solution the bulk of the heat capacity at 25°C is given by the covalent structure term (close to 85% of the total). The hydration term contributes about 15 and 40% to the total heat capacity of the native and unfolded states, respectively. The contribution of non-covalent structure to the total heat capacity of the native state is positive but very small and does not amount to more than 3% at 25°C. The change in heat capacity upon unfolding is primarily given by the increase in the hydration term (about 95%) and to a much lesser extent by the loss of noncovalent interactions (up to ~5%). It is demonstrated that a single universal mathematical function can be used to represent the partial molar heat capacity of the native and unfolded states of proteins in solution. This function can be experimentally written in terms of the molecular weight, the polar and apolar solvent accessible surface areas, and the total area buried from the solvent. This unique function accurately predicts the different magnitude and temperature dependences of the heat capacity of both the native and unfolded states, and therefore of the heat capacity changes associated with folding/unfolding transitions. © 1995 Wiley-Liss, Inc.  相似文献   

5.
One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model.  相似文献   

6.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

7.
Absolute values of heat capacity for some hydrated globular proteins have been studied by differential scanning calorimetry (DSC) method. It has been found that for the proteins with completely bound water, like in the case of protein solutions, the value of heat capacity of denatured proteins is higher than that prior to denaturation. Depending on temperature and humidity the denatured proteins can be either in high elastic or glass state. Specific heat capacities for these two states have the same values for all proteins and depend only on temperature with a characteristic increment of 0.55 J/g.K. at glass transition. The glass transitions were observed not only in denatured but also in native proteins. As it follows from our results, the main contribution to the heat capacity increment at denaturation is connected with the thermal motion in the protein globule which is in contrast with the commonly accepted ideas.  相似文献   

8.
Norbert Muller 《Biopolymers》1993,33(8):1185-1193
According to the conventional definition, the hydrophobic effect is a result of thermodynamic changes occurring when a nonpolar group dissolves in water and attributable to the fact that water in contact with such a group has special structural and energetic properties. Disagreement now exists as to whether this effect promotes or hinders protein denaturation. Taking the heat capacity change of unfolding as a measure of the hydrophobicity of the protein interior, others have shown that protein stabilities are systematically affected by changes in hydrophobicity. It has been suggested that the observed trends show that hydrophobic hydration is intrinsically a destabilizing factor. Model calculations using known equations for the stability curves and certain simplifying assumptions now show that such regularities provide no evidence for or against this conclusion. All available data can be rationalized if hydrophobic terms are evaluated from models that require a positive hydrophobic contribution to the Gibbs energy of unfolding. The calculations also confirm the recent finding that any set of proteins with denaturation temperatures between about 330 and 380 K that exhibits entropy convergence at about 386 K is thermodynamically required to show enthalpy convergence at approximately the same temperature. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
13C proton decoupled cross-polarization magic-angle spinning nmr spectra of lysozyme are reported as a function of hydration. Increases in hydration level enhance the resolution of the spectra, particularly in the aliphatic region, but has no significant effect on either the rotating frame proton spin–lattice relaxation time or the cross-relaxation time. The enhancement in spectral resolution with hydration is attributed to a decrease in the distribution of isotropic chemical shifts, which reflects a decrease in the distribution of conformational states sampled by the protein. Changes in the distribution of isotropic chemical shifts occur after the addition of water to the charged groups as coverage of the polar side chains and peptide groups takes place. The onset of this behavior occurs at a hydration level of about, 0.1–0.2 g water/g protein and is largely complete at about 0.3 g water/g protein, the same hydration range where changes in the heat capacity are observed. That hydrogen exchange of buried protons can occur at hydration levels significantly lower than those at which changes in the distribution of conformational states are first observed suggests that some motions that mediate exchange are already present in the dry protein. The preservation of efficient dipolar coupling indicates that the conformational rearrangements that do-occur on hydration are small and do not involve any significant overall expansion of free volume or weakening of interactions that would increase the reorientational freedom of protein groups. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The partial specific heat capacity and volume of globular proteins and dispersions of phosphatidylcholines in aqueous solutions have been determined over a broad temperature range using a precise scanning microcalorimeter and a vibrational densimeter. It is shown that the temperature-induced, gel-to-liquid crystalline phase transition in phosphatidylcholines proceeds without a noticeable change in heat capacity but with a significant increase in the specific volume, whereas heat denaturation in proteins takes place without a noticeable change in the volume but with a significant increase in heat capacity. This principal difference between temperature-induced conformational phase transitions in proteins and lipids demonstrates clearly that heat denaturation of proteins, in contrast to the gel-to-liquid crystalline phase transition in lipids, cannot be regarded as a process similar to melting. Consequently, the 'molten globule' does not appear to be a suitable model for a heat-denatured protein.  相似文献   

11.
A computerized spectrophotometer system which is capable of simultaneously obtaining three spectral dimensions, that is, the absorbance, the circular dichroism and the fluorescence intensity, from one sample solution has been developed for the purpose of attaining a higher resolving power in the study of conformational transitions of biological macromolecules. Measurement conditions, such as the wavelength, the temperature, pH or the concentration of reagents in the sample solution, can be scanned according to a sequence that is set just prior to the measurement. A computer-driven micro-injector and a pH electrode directly immersed in the sample solution make it possible to obtain a titration curve in parallel to the optical measurement. All the data taken are stored on a magnetic disk for later retrieval. They can be processed and displayed in any required form. The helix-coil transitions of a polynucleotide caused by temperature and those of a polypeptide caused by pH, and the denaturation of proteins caused by guanidine hydrochloride, were studied by this measuring system. The continuous plotting of transition profiles and the correlation diagrams among different spectral dimensions has proved to be a good way of demonstrating the existence of different modes of transition.  相似文献   

12.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

13.
The contributions of backbone NH group dynamics to the conformational heat capacity of the B1 domain of Streptococcal protein G have been estimated from the temperature dependence of 15N NMR-derived order parameters. Longitudinal (R1) and transverse (R2) relaxation rates, transverse cross-relaxation rates (eta(xy)), and steady state [1H]-15N nuclear Overhauser effects were measured at temperatures of 0, 10, 20, 30, 40, and 50 degrees C for 89-100% of the backbone secondary amide nitrogen nuclei in the B1 domain. The ratio R2/eta(xy) was used to identify nuclei for which conformational exchange makes a significant contribution to R2. Relaxation data were fit to the extended model-free dynamics formalism, incorporating an axially symmetric molecular rotational diffusion tensor. The temperature dependence of the order parameter (S2) was used to calculate the contribution of each NH group to conformational heat capacity (Cp) and a characteristic temperature (T*), representing the density of conformational energy states accessible to each NH group. The heat capacities of the secondary structure regions of the B1 domain are significantly higher than those of comparable regions of other proteins, whereas the heat capacities of less structured regions are similar to those in other proteins. The higher local heat capacities are estimated to contribute up to approximately 0.8 kJ/mol K to the total heat capacity of the B1 domain, without which the denaturation temperature would be approximately 9 degrees C lower (78 degrees C rather than 87 degrees C). Thus, variation of backbone conformational heat capacity of native proteins may be a novel mechanism that contributes to high temperature stabilization of proteins.  相似文献   

14.
Density functional theory (DFT)-based investigations have been put forward on the elastic, mechanical, and thermo-dynamical properties of BaPaO3. The pressure dependence of electronic band structure and other physical properties has been carefully analyzed. The increase in Bulk modulus and decrease in lattice constant is seen on going from 0 to 30 GPa. The predicted lattice constants describe this material as anisotropic and ductile in nature at ambient conditions. Post-DFT calculations using quasi-harmonic Debye model are employed to envisage the pressure-dependent thermodynamic properties like Debye temperature, specific heat capacity, Grüneisen parameter, thermal expansion, etc. Also, the computed Debye temperature and melting temperature of BaPaO3 at 0 K are 523 K and 1764.75 K, respectively.  相似文献   

15.
Knott M  Chan HS 《Proteins》2006,65(2):373-391
Recent investigations of possible downhill folding of small proteins such as BBL have focused on the thermodynamics of non-two-state, "barrierless" folding/denaturation transitions. Downhill folding is noncooperative and thermodynamically "one-state," a phenomenon underpinned by a unimodal conformational distribution over chain properties such as enthalpy, hydrophobic exposure, and conformational dimension. In contrast, corresponding distributions for cooperative two-state folding are bimodal with well-separated population peaks. Using simplified atomic modeling of a three-helix bundle-in a scheme that accounts for hydrophobic interactions and hydrogen bonding-and coarse-grained C(alpha) models of four real proteins with various degrees of cooperativity, we evaluate the effectiveness of several observables at defining the underlying distribution. Bimodal distributions generally lead to sharper transitions, with a higher heat capacity peak at the transition midpoint, compared with unimodal distributions. However, the observation of a sigmoidal transition is not a reliable criterion for two-state behavior, and the heat capacity baselines, used to determine the van't Hoff and calorimetric enthalpies of the transition, can introduce ambiguity. Interestingly we find that, if the distribution of the single-molecule radius of gyration were available, it would permit discrimination between unimodal and bimodal underlying distributions. We investigate kinetic implications of thermodynamic noncooperativity using Langevin dynamics. Despite substantial chevron rollovers, the relaxation of the models considered is essentially single-exponential over an extended range of native stabilities. Consistent with experiments, significant deviations from single-exponential behavior occur only under strongly folding conditions.  相似文献   

16.
The process of pressure-induced denaturation of carboxypeptidase Y and the role of the carbohydrate moiety in its response to pressure and low temperature were investigated by measuring in situ the catalytic activity and, the intrinsic and 8-anilino-1-naphthalene sulfonic acid binding fluorescences. Pressure-induced denaturation of carboxypeptidase Y is a process involving at least three transitions. Low pressures (below 150 MPa) induced slight conformational changes characterized by a slight decrease in the center of the spectral mass of intrinsic fluorescence, whereas no changes in 8-anilino-1-naphthalene sulfonic acid binding fluorescence were observed and 80% of the catalytic activity remained. Higher pressure (150-500 MPa) induced further conformational changes, characterized by a large decrease in the center of the spectral mass of intrinsic fluorescence, a large increase in the 8-anilino-1-naphthalene sulfonic acid binding fluorescence and the loss of all catalytic activity. Thus, this intermediate exhibited characteristics of molten globule-like state. A further increase, in pressure (above 550 MPa) induced transition from this first molten globule-like state to a second molten globule-like state. This two-stage denaturation process can be explained by assuming the existence of two independent structural domains in the carboxypeptidase molecule. A similar three-transition process was found for unglycosylated carboxypeptidase Y, but, the first two transitions clearly occurred at lower pressures than those for glycosylated carboxypeptidase Y. These findings indicate that the carbohydrate moiety protects carboxypeptidase Y against pressure-induced denaturation. The origin of the protective effects is discussed based on the known crystallographic structure of CPY.  相似文献   

17.
The changes in beta-lactoglobulin upon cold and heat denaturation were studied by scanning calorimetry, CD, and NMR spectroscopy. It is shown that, in the presence of urea, these processes of beta-lactoglobulin denaturation below and above 308 K are accompanied by different structural and thermodynamic changes. Analysis of the NOE spectra of beta-lactoglobulin shows that changes in the spin diffusion of beta-lactoglobulin after disruption of the unique tertiary structure upon cold denaturation are much more substantial than those upon heat denaturation. In cold denatured beta-lactoglobulin, the network of residual interactions in hydrophobic and hydrophilic regions of the molecules is more extensive than after heat denaturation. This suggests that upon cold- and heat-induced unfolding, the molecule undergoes different structural rearrangements, passing through different denaturation intermediates. From this point of view, cold denaturation can be considered to be a two stage process with a stable intermediate. A similar equilibrium intermediate can be obtained at 35 degrees C in 6.0 M urea solution, where the molecule has no tertiary structure. Cooling or heating of the solution from this temperature leads to unfolding of the intermediate. However, these processes differ in cooperativity, showing noncommensurate sigmoidal-like changes in efficiency of spin diffusion, ellipticity at 222 nm, and partial heat capacity. The disruption with cooling is accompanied by cooperative changes in heat capacity, whereas with heating the heat capacity changes only gradually. Considering the sigmoidal shape of the heat capacity change an extended heat absorption peak, we propose that the intermediate state is stabilized by enthalpic interactions.  相似文献   

18.
Effect of Zn2+ on the thermal denaturation of carboxypeptidase B   总被引:2,自引:0,他引:2  
A differential scanning calorimetry study on the thermal denaturation of porcine pancreas carboxypeptidase B (in 20 mM pyrophosphate buffer, pH 9.0) has been carried out. The calorimetric transitions have been found to be calorimetrically irreversible and to depend on the Zn2+ concentration in the buffer. The effect of the Zn2+ concentration on the temperatures corresponding to maximum heat capacity appears to conform the dictates of the van't Hoff equation. In spite of this, analysis of the scanning rate effect on the transitions, together with studies on the thermal inactivation kinetics, show that the heat absorption is entirely determined by the rate of formation of the final (irreversibly denatured) state of the protein; therefore, analysis of the calorimetric transitions according to equilibrium thermodynamics models is not permissible. The effect of Zn2+ on the calorimetric transitions can be explained on the basis of a simple kinetic model that does not assume chemical equilibrium to be established between the significantly populated states of the protein.  相似文献   

19.
The investigation of the effect of acid pH on the structure of beta-globulin indicated several transitions as a function of pH. Upon reducing the pH from 7.0, the beta-globulin molecule underwent an expansion due to hydration up to pH 5.0, and a further increase in H+ concentration resulted in unfolding. This is a single step cooperative denaturation as indicated by the viscosity profile. At extreme acid pH values (below pH 2.0) the protein associates or folds to a different conformational motif as shown by blue shift of ultraviolet fluorescence emission maximum and decrease in reduced viscosity values by more than 30% due to an entropically driven hydrophobic interaction. The conformational analysis of beta-globulin showed a decrease up to pH 3.0, followed by an increase in the ordered structure at low pH values indicating that the low pH values stabilized this new conformation. These results are discussed in view of the molten globule structure of proteins.  相似文献   

20.
The energetics of barstar denaturation have been studied by CD and scanning microcalorimetry in an extended range of pH and salt concentration. It was shown that, upon increasing temperature, barstar undergoes a transition to the denatured state that is well approximated by a two-state transition in solutions of high ionic strength. This transition is accompanied by significant heat absorption and an increase in heat capacity. The denaturational heat capacity increment at approximately 75 degrees C was found to be 5.6 +/- 0.3 kJ K-1 mol-1. In all cases, the value of the measured enthalpy of denaturation was notably lower than those observed for other small globular proteins. In order to explain this observation, the relative contributions of hydration and the disruption of internal interactions to the total enthalpy and entropy of unfolding were calculated. The enthalpy and entropy of hydration were found to be in good agreement with those calculated for other proteins, but the enthalpy and entropy of breaking internal interactions were found to be among the lowest for all globular proteins that have been studied. Additionally, the partial specific heat capacity of barstar in the native state was found to be 0.37 +/- 0.03 cal K-1 g-1, which is higher than what is observed for most globular proteins and suggests significant flexibility in the native state. It is known from structural data that barstar undergoes a conformational change upon binding to its natural substrate barnase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号