首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lipid component was found in cellulosomes (multienzymatic cellulase complexes) of the thermophilic bacterium Clostridium thermocellum. Two major fractions of the cellulosomes have been studied, one with a relative molecular mass (Mr) of 10–50 million (polycellulosomes, fraction A) and the other with an Mr 0.5–10 million (fraction B) It was found that the larger cellulosomes contained higher relative amounts of lipids (8.1%) as well as Ca2+ ions (0.6%), and showed higher cellulolytic activity Among the lipids was cardiolipin, 1,2- and 1,3-diglycerides, triglycerides, and up to 11 free fatty acids, including both saturated (palmitic, lauric, myristic, pentadecanoic, stearic, arachinic) and unsaturated (myristoleic, palmitoleic, and oleic) moieies Cardiolipin was a major phospholipid component in cellulosomes and was also found to be a major phospholipid component of the cell membrane, palmitic acid was a major fatty acid Fraction B contained less fatty acids (0.5% vs 1.27% in fraction A) with fewer acids detected than in fraction A Removal of the extractable lipids led to fragmentation of the cellulosomes with a concurrent sharp drop in their enzymatic activity Total removal of the lipids from cellulosomes was possible only when the proteins were completely denatured The qualitative composition of the extractable and non-extractable fatty acids was the same The lipid component of the cellulosomes, containing a high content of the unsaturated fatty acids, was located mainly in the part of cellulosomes that is in tight contact with the cellulose surface, and it apparently plays an important role in the tight adsorption of the cellulosomes on cellulose.  相似文献   

2.
Growth and sporulation of a Bacillus subtilis mutant deficient in branched fatty acid synthesis (gene symbol bfmB) were examined. The mutant, which produces an acyl-coenzyme A:acyl carrier protein transacylase with reduced affinity for branched fatty acid primers, could grow in media containing any one of a wide range of low-molecular-weight fatty acids having branched, cyclic, saturated, or unsaturated carbon chains. The fatty acid composition of cellular lipids depended on the compound used to support growth. Cultures of the bfmB mutant grown in the presence of 3-methylcrotonate contained an unusually high fraction (73%) of straight-chain fatty acids in the cellular lipids. The mutant sporulated with any one of the precursors of branched fatty acids in the medium; isolated spores contained mainly this branched fatty acid and only 10% or less straight-chain fatty acids regardless of the straight-chain fatty acid content of vegetative cells. Exceptional were spores grown in the presence of cyclobutane-carboxylic acid, which contained 28% straight-chain fatty acids. The branched fatty acid composition of spores could be modified greatly by changing the supply of precursors in the medium.  相似文献   

3.
While oxidation products of unsaturated fatty acids, for example dicarboxylic acids (hereafter diacids), must form during the use of unglazed ceramic vessels for the processing of animal and plant products, such components have never been observed during studies of absorbed lipids. Their absence from the extractable lipid fraction is presumed to be the result of their loss from potsherds through groundwater leaching. Lipid oxidation products including short-chain dicarboxylic acids, ω-hydroxy acids and longer-chain hydroxy and dihydroxy acids have now been observed as components probably covalently bound into solvent insoluble residues of potsherds recovered from waterlogged deposits. These components were only revealed following alkaline treatment of the insoluble residues. A similar mixture of diacids was observed in high abundance in the free lipid fraction of vessels recovered from an exceptionally arid deposit where groundwater leaching would never have occurred. These results confirm the formation of oxidation and probable polymerization products of unsaturated fatty acids during vessel use and burial.  相似文献   

4.
Haemophilus parainfluenzae was capable of synthesizing 22 fatty acids. These fatty acids were equivalent to 4% of the bacterial dry weight. These fatty acids were localized in the membrane-wall complex, which contained the respiratory pigments, the quinone, and the phospholipids. The fatty acids which could be extracted with organic solvents comprised 86% of the total fatty acids of the cell. These fatty acids were distributed as 98% in the phospholipids and 1.9% in the neutral lipids, of which 0.5% were free fatty acids. Palmitic, palmitoleic, oleic, and vaccenic acids comprised 72% of the total fatty acids and were found almost exclusively in the phospholipids. The phospholipids also contained the cyclopropane fatty acids. The neutral lipids contained significant proportions of the odd-numbered branched and straight-chain fatty acids. The principal free fatty acids were n-dodecanoic and pentadecenoic acids. The nonextractable wall complex contained 14% of the total fatty acids. These wall fatty acids were rendered soluble only after saponification. The wall fraction contained all of the beta-hydroxymyristic acid and most of the myristoleic and pentadecenoic acids. The significance of the distribution of fatty acids between nonesterified, neutral lipid, phospholipid, and nonextractible wall remains to be determined.  相似文献   

5.
Complex lipids of Rhodomicrobium vannielii   总被引:13,自引:12,他引:1       下载免费PDF全文
Eight components, seven of which contained phosphorus, were found in the phospholipid fraction of Rhodomicrobium vannielii. The major components were lipoamino acid (o-ornithine ester of phosphatidyl glycerol, 46.5%) and phosphatidyl choline (26.5%). The other six components were phosphatidyl glycerol (9.7%), bisphosphatidic acid (6.7%), phosphatidyl ethanolamine (4.5%), phosphatidic acid (1.8%), lysophosphatidyl glycerol-o-ornithine ester (3.2%), and N,N-ornithine amide of unidentified fatty acid (0.95%). Total phospholipid accounted for 4.2% of cell dry weight. The major fatty acid was vaccenic acid, C18:1, which accounted for approximately 90% of the total fatty acids of the complex lipid fraction. The other four fatty acids were C16:0 (6.25%), C18:0 (3.8%), C14:0 (0.7%), and C16:1 (0.35%). The sulfolipid content was 0.01% of the cell dry weight or 0.14 μmoles per g of dried cells, assuming that its fatty acid component is vaccenic acid. No steroids were detected.  相似文献   

6.
Lipids from rat Harderian glands were extracted with ethyl acetate, hydrolysed with base and examined by gas chromatography (GC) and gas chromatography—mass spectrometry (GC—MS) as trimethylsilyl (TMS), [2H9]TMS, methyl ester—TMS, picolinyl, nicotinate and nicotinylidene derivatives. The latter three derivatives were used to reveal the structures of the alkyl chains of fatty acids, alcohols and glycerol ethers, respectively. Forty-eight compounds were identified, representing about 97% of the total extracted lipids as measured by GC peak areas. The major constituents were fatty acids with chain lengths from 12 to 22 carbon atoms (mainly C18 and C20) and fatty alcohols (C16 to C26) derived from wax esters. Most of these acids and alcohols were unsaturated in the ω-7 position and were accompanied by smaller amounts of the saturated and ω-5 monounsaturated analogues. Glycerol ethers were also identified for the first time in this secretion; the ether chains contained from 14 to 19 carbon atoms (mainly 16) and were straight-chain saturated, unsaturated (ω-5 and ω-7) and branched (iso). The only sterol found was cholesterol amounting to 1.24% of the total extract.  相似文献   

7.
Chlorella kessleri cultivated in a deep tank contained 4.8% of non-polar lipid; 51% of this fraction represents saturated fatty acids, 7% unsaturated fatty acids. Our investigation of the fatty acids profile demonstrated even- and odd-numbered saturated and unsaturated fatty acids ranging from C12 to C20. Unlike in otherChlorella species, stearic acid was the dominant fatty acid found. Also shown was an elevated C16:0 fatty acid content and a reduced level of unsaturated fatty acids.  相似文献   

8.
The lipid compositions of barophilic bacterial strains which contained docosahexaenoic acid (DHA [22:6n-3]) were examined, and the adaptive changes of these compositions were analyzed in response to growth pressure. In the facultatively barophilic strain 16C1, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) were major components which had the same fatty acid chains. However, in PE, monounsaturated fatty acids such as hexadecenoic acid were major components, and DHA accounted for only 3.7% of the total fatty acids, while in PG, DHA accounted for 29.6% of the total fatty acids. In response to an increase in growth pressure in strain 16C1, the amounts of saturated fatty acids in PE were reduced, and these decreases were mainly balanced by an increase in unsaturated fatty acids, including DHA. In PG, the decrease in saturated fatty acids was mainly balanced by an increase in DHA. Similar adaptive changes in fatty acid composition were observed in response to growth pressure in obligately barophilic strain 2D2. Furthermore, these adaptive changes in response were also observed in response to low temperature in strain 16C1. These results confirm that the general shift from saturated to unsaturated fatty acids including DHA is one of the adaptive changes in response to increases in pressure and suggest that DHA may play a role in maintaining the proper fluidity of membrane lipids under high pressure.  相似文献   

9.
Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation.  相似文献   

10.
Summary Dieary lipids strongly influence the pattern of torpor and the body lipid composition of mammalian hibernators. The object of the present study was to investigate whether these diet-induced physiological and biochemical changes also occur in species that show shallow, daily torpor. Deer mice, Peromyscus maniculatus, were fed with rodent chow (control diet) or rodent chow with either 10% sunflower seed oil (unsaturated diet) or 10% sheep fat (saturated diet). Animals on the unsaturated diet showed a greater occurrence of torpor (80–100% vs 26–43%), longer torpor bouts (4.5 vs 2.25 h), a lower metabolic rate during torpor (0.96 vs 2.25 ml O2·g-1·h-1), and a smaller loss of body mass during withdrawal of food (2.35 vs 3.90 g) than animals on the saturated diet; controls were intermediate. These diet-induced physiological changes were associated with significant alterations in the fatty acid composition of depot fat, leg muscle and brain total lipids, and heart mitochondrial phospholipids. Significant differences in the total unsaturated fatty acid (UFA) content between animals on saturated and unsaturated diet were observed in depot fat (55.7% vs 81.1%) and leg muscle (56.4% vs 72.1%). Major compositional differences between diet groups also occurred in the concentration of n6 and/or n3 fatty acids of brain and heart mitochondria. The study suggests that dietary lipids may play an important role in the seasonal adjustment of physiology in heterothermic mammals.Abbreviations EDTA ethylenediaminetetra-acetic acid - HEPES N-2 hydroxyethylpiperazine-N1-2-ethanesulphonic acid - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - RMR Testing metabolic rate - SD standard deviation - SFA saturated fatty acids - SNK Student-Newman-Keuls test - T1 air temperature - Tb body temperature - UFA unsaturated fatty acids - rate of oxygen consumption Dedicated to the late John K. Raison  相似文献   

11.
The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.  相似文献   

12.
The lipid fraction of the green alga Botryococcuscultured in a batch mode was found to contain polar lipids (more than 50% of the total lipids), di- and triacylglycerols, sterols and their esters, free fatty acids, and hydrocarbons. In aging culture, the content of polar lipids somewhat decreased and that of triacylglycerols increased by more than four times. The content of hydrocarbons in the algal biomass did not exceed 0.9% and depended little on the culture age. Intracellular lipids contained saturated and unsaturated (mono-, di-, and trienoic) fatty acids. The maximum content of C16 : 3and -C18 : 3fatty acids (up to 35% of the total fatty acids) was detected in the phase of active growth. The extracellular and intracellular lipids of the alga differed in the proportion of particular lipids and in the fatty acid pattern.  相似文献   

13.
The cytoplasmic membrane of the heterocystous cyanobacterium Nostoc commune UTEX 584 was isolated free of thylakoids and phycobiliprotein-membrane complexes by flotation centrifugation. Purified membranes had a buoyant density of 1.07 g cm−3 and were bright orange. Twelve major proteins were detected in the membrane, and of these, the most abundant had molecular masses of 83, 71, 68, 51, and 46 kilodaltons. The ester-linked fatty acids of the methanol fraction contained 16:0, 18:0, 18:1ω9c, 20:0, and 20:3ω3 with no traces of hydroxy fatty acids. Compound 20:3ω3 represented 56.8% of the total fatty acid methyl esters, a feature which distinguishes the cell membrane of N. commune UTEX 584 from those of all other cyanobacteria which have been characterized to date. Fatty acid 18:3 was not detected. Carotenoids were analyzed by highperformance liquid chromatography. The cytoplasmic membrane contained β-carotene and echinenone as the dominant carotenoids and lacked chlorophyll a and pheophytin a. Whole cells contained β-carotene and echinenone, and lesser amounts of zeaxanthin and (3R)-cryptoxanthin.  相似文献   

14.
Pseudomonas saccharophila NRRL B-628 is capable of utilizing agricultural lipids for growth. The organism exhibited good growth with triacylglycerol substrates that contained saturated fatty acyl moieties such as coconut oil (CO; C10–12 fatty acids) and tallow (T; C16–18 fatty acids). Electron micrographs of the triacylglycerol-grown cells showed the presence of intracellular granules indicative of poly(β-hydroxyalkanoate) (PHA) production. Cells grown in a 250-ml CO-containing medium produced ca. 0.2 g of medium-chain-length (mcl)-PHA. Gas chromatographic analysis showed that β-hydroxyoctanoic acid (30%), β-hydroxydecanoic acid (40%), and β-hydroxydodecanoic acid (16%) were the major monomer repeat-units of the CO-derived polymer. The estimated mean molecular mass of the CO-derived mcl-PHA as determined by gel permeation chromatography was 13.1 × 104 g/mol with a polydispersity of 3.16. Received: 15 August 1998 / Accepted: 25 September 1998  相似文献   

15.
A naturally occurring fatty acid-requiring Butyrivibrio sp. (strain S2), isolated from the ovine rumen, deacylates plant galactolipids, phospholipids and sulpholipids to obtain sufficient fatty acid for growth. Growth in vitro was promoted by adding to the growth medium a single straight-chain saturated fatty acid (C13 to C18) or vaccenic acid. Palmitoleic and oleic acids also supported growth but gave lengthy lag phases probably due to their toxicity. Linolenic and linoleic acids supported good growth but they were completely hydrogenated to trans-11-octadecenoic acid which was incorporated into the bacterial complex lipids. No chain elongation, chain shortening or desaturation of the added fatty acids occurred and all were substantially incorporated into bacterial lipids of the plasmalogen type, partially as a new type of hydrophobic grouping derived from two molecules of fatty acid. The absence of fatty acid unsaturation poses the question of the maintenance of membrane fluidity within this bacterium.  相似文献   

16.
Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in β-oxidation convert these substrates to long-chain α,ω-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is ω-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to ω-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized ω-hydroxy fatty acids, ultimately generating the α,ω-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for β-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.  相似文献   

17.
Serum sphingomyelins were analyzed by argentation chromatography of the corresponding ceramide diacetates. Six subfractions were obtained. Three of them contained 4-sphingenines in combination with saturated, trans-, or cis-monoenoic fatty acids; the remaining three contained sphingadienine, also in combination with saturated, trans-, or cis-monoenoic fatty acids. Palmitic acid was the principal fatty acid combined with 4-sphingenines, while nervonic acid was the principal fatty acid combined with sphingadienine. About 4% of the total fatty acids of sphingomyelin were trans-monoenoic. They were comprised of many positional isomers of straight-chain C(22-24) compounds. The cis-monoenoic acids made up 33% of the total acids and consisted of almost pure nervonic acid. The rest of the acids were saturated. The 4-sphingenines contained small amounts of iso-C(18) and anteiso-C(19) compounds in addition to the straight-chain C(16-18) bases.  相似文献   

18.
Lysine limitation during growth of the lysine-requiring mutant of Escherichia coli 12408 resulted in the excretion of a complex containing 60% of lipopolysaccharide, 26% of extractable phospholipid and 11% of protein. The complex was obtained from the culture filtrate in yields of about 0·5g./l. by precipitation with chloroform or gel filtration; some purification steps are described. The greater part of the phospholipid consisted of phosphatidylethanolamine, which contained four main fatty acids; two monoenoic acids and a cyclopropane acid were esterified mainly in the β-position, and a saturated acid was located mainly in the γ-position. The protein component was relatively insoluble and contained an excess of acidic over basic amino acids and little cystine. The lipopolysaccharide resembled in composition the intracellular lipopolysaccharides from rough strains of E. coli. Both protein and lipopolysaccharide constituents of the complex were serologically active; the complex was less toxic than the purified lipopolysaccharide. In the electron microscope the complex showed a mixture of particles of various sizes and shapes. Rods and hollow spheroids (diameter 12–200mμ) were most common and resembled the particles previously found surrounding cells actively excreting the complex. The chloroform-precipitated material showed a tubular lamellar structure. Soluble lipopolysaccharide prepared from the complex also consisted of hollow spheres and rods.  相似文献   

19.
The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state.  相似文献   

20.
The extractable and bound lipids of a moderately halophilic gram-negative rod, strain No. 101 (wild type) grown in a medium containing 2 M NaC1, were examined. The extractable lipids were separated into at least 8 components by using thin-layer chromatography. The major phospholipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified phosphoglycolipid in the whole cells, cell envelopes and outer membrane preparations, commonly. Judging from mild alkaline hydrolysis and exzymatic treatment with phospholipase A2, C and D, the unidentified phosphoglycolipid possessing Pi, glycerol, fatty acids and glucose in a molar ratio of 1 : 2 : 2 : 1, appeared likely to be a glucosyl derivative of phosphatidylglycerol. No glucuronic acid containing lipid was detected. The exractable lipid composition varied greatly with the concentrations of NaC1 in the medium and the stages of bacterial growth. The most characteristic phosphoglycolipid in this organism increased up to 25% of the total phospholipids with the addition of 1% glucose in the medium. The major fatty acids of the extractable lipids were C16:0, C16:1, C18:0, C18:1 and cyclopropanoic C17 and C19 acids and these compositions were very similar for each phospholipid. The cyclopropanoic fatty acids predominated as growth proceeded. The fatty acids of the bound lipids comprised a high concentration of 3-hydroxydodecanoic acid. The esterified fatty acids of the lipopolysaccharide molecule seemed to contain a wide variety of hydroxy and non-hydroxy shorter chain fatty acids, while the amide-linked fatty acids consisted almost entirely of 3-hydroxydodecanoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号