首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

2.
Vitamin E is a lipophilic anti-oxidant that can prevent the oxidative damage of atherogenic lipoproteins. However, human trials with vitamin E have been disappointing, perhaps related to ineffective levels of vitamin E in atherogenic apoB-containing lipoproteins. Phospholipid transfer protein (PLTP) promotes vitamin E removal from atherogenic lipoproteins in vitro, and PLTP deficiency has recently been recognized as an anti-atherogenic state. To determine whether PLTP regulates lipoprotein vitamin E content in vivo, we measured alpha-tocopherol content and oxidation parameters of lipoproteins from PLTP-deficient mice in wild type, apoE-deficient, low density lipoprotein (LDL) receptor-deficient, or apoB/cholesteryl ester transfer protein transgenic backgrounds. In all four backgrounds, the vitamin E content of very low density lipoprotein (VLDL) and/or LDL was significantly increased in PLTP-deficient mice, compared with controls with normal plasma PLTP activity. Moreover, PLTP deficiency produced a dramatic delay in generation of conjugated dienes in oxidized apoB-containing lipoproteins as well as markedly lower titers of plasma IgG autoantibodies to oxidized LDL. The addition of purified PLTP to deficient plasma lowered the vitamin E content of VLDL plus LDL and normalized the generation of conjugated dienes. The data show that PLTP regulates the bioavailability of vitamin E in atherogenic lipoproteins and suggest a novel strategy for achieving more effective concentrations of anti-oxidants in lipoproteins, independent of dietary supplementation.  相似文献   

3.
The specifics of nascent HDL remodeling within the plasma compartment remain poorly understood. We developed an in vitro assay to monitor the lipid transfer between model nascent HDL (LpA-I) and plasma lipoproteins. Incubation of α-125I-LpA-I with plasma resulted in association of LpA-I with existing plasma HDL, whereas incubation with TD plasma or LDL resulted in conversion of α-125I-LpA-I to preβ-HDL. To further investigate the dynamics of lipid transfer, nascent LpA-I were labeled with cell-derived [3 H]cholesterol (UC) or [3H]phosphatidylcholine (PC) and incubated with plasma at 37°C. The majority of UC and PC were rapidly transferred to apolipoprotein B (apoB). Subsequently, UC was redistributed to HDL for esterification before being returned to apoB. The presence of a phospholipid transfer protein (PLTP) stimulator or purified PLTP promoted PC transfer to apoB. Conversely, PC transfer was abolished in plasma from PLTP−/− mice. Injection of 125I-LpA-I into rabbits resulted in a rapid size redistribution of 125I-LpA-I. The majority of [3H]UC from labeled r(HDL) was esterified in vivo within HDL, whereas a minority was found in LDL. These data suggest that apoB plays a major role in nascent HDL remodeling by accepting their lipids and donating UC to the LCAT reaction. The finding that nascent particles were depleted of their lipids and remodeled in the presence of plasma lipoproteins raises questions about their stability and subsequent interaction with LCAT.  相似文献   

4.
The plasma phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family, together with the cholesteryl ester transfer protein, the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI). In the present study, we used the crystallographic data available for BPI to build a three-dimensional model for PLTP. Multiple sequence alignment suggested that, in PLTP, a cluster of hydrophobic residues substitutes for a cluster of positively charged residues found on the surface of LBP and BPI, which is critical for interaction with lipopolysaccharides. According to the PLTP model, these hydrophobic residues are situated on an exposed hydrophobic patch at the N-terminal tip of the molecule. To assess the role of this hydrophobic cluster for the functional activity of PLTP, single point alanine mutants were engineered. Phospholipid transfer from liposomes to high density lipoprotein (HDL) by the W91A, F92A, and F93A PLTP mutants was drastically reduced, whereas their transfer activity toward very low density lipoprotein and low density lipoprotein did not change. The HDL size conversion activity of the mutants was reduced to the same extent as the PLTP transfer activity toward HDL. Based on these results, we propose that a functional solvent-exposed hydrophobic cluster in the PLTP molecule specifically contributes to the PLTP transfer activity on HDL substrates.  相似文献   

5.
The human tear fluid film consists of a superficial lipid layer, an aqueous middle layer, and a hydrated mucin layer located next to the corneal epithelium. The superficial lipid layer protects the eye from drying and is composed of polar and neutral lipids provided by the meibomian glands. Excess accumulation of lipids in the tear film may lead to drying of the corneal epithelium. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. To gain insight into the formation of tear film, we investigated whether PLTP and CETP are present in human tear fluid. Tear fluid samples were collected with microcapillaries. The presence of PLTP and CETP was studied in tear fluid by Western blotting, and the PLTP concentration was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. Size-exclusion and heparin-affinity chromatography assessed the molecular form of PLTP. PLTP is present in tear fluid, whereas CETP is not. Quantitative assessment of PLTP by ELISA indicated that the PLTP concentration in tear fluid, 10.9 +/- 2.4 microg/mL, is about 2-fold higher than that in human plasma. PLTP-facilitated phospholipid transfer activity in tears, 15.1 +/- 1.8 micromol mL(-)(1) h(-)(1), was also significantly higher than that measured in plasma. Inactivation of PLTP by heat treatment (+58 degrees C, 60 min) or immunoinhibition abolished the phospholipid transfer activity in tear fluid. Size-exclusion chromatography of tear fluid indicated that PLTP eluted in a position corresponding to a size of 160-170 kDa. Tear fluid PLTP was quantitatively bound to Heparin-Sepharose and could be eluted as a single peak by 0.5 M NaCl. These data indicate that human tear fluid contains catalytically active PLTP protein, which resembles the active form of PLTP present in plasma. The results suggest that PLTP may play a role in the formation of the tear film by supporting phospholipid transfer.  相似文献   

6.
In vitro experiments have demonstrated that exogenous phospholipid transfer protein (PLTP), i.e. purified PLTP added to macrophage cultures, influences ABCA1-mediated cholesterol efflux from macrophages to HDL. To investigate whether PLTP produced by the macrophages (i.e., endogenous PLTP) is also part of this process, we used peritoneal macrophages derived from PLTP-knockout (KO) and wild-type (WT) mice. The macrophages were transformed to foam cells by cholesterol loading, and this resulted in the upregulation of ABCA1. Such macrophage foam cells from PLTP-KO mice released less cholesterol to lipid-free apolipoprotein A-I (apoA-I) and to HDL than did the corresponding WT foam cells. Also, when plasma from either WT or PLTP-KO mice was used as an acceptor, cholesterol efflux from PLTP-KO foam cells was less efficient than that from WT foam cells. After cAMP treatment, which upregulated the expression of ABCA1, cholesterol efflux from PLTP-KO foam cells to apoA-I increased markedly and reached a level similar to that observed in cAMP-treated WT foam cells, restoring the decreased cholesterol efflux associated with PLTP deficiency. These results indicate that endogenous PLTP produced by macrophages contributes to the optimal function of the ABCA1-mediated cholesterol efflux-promoting machinery in these cells. Whether macrophage PLTP acts at the plasma membrane or intracellularly or shuttles between these compartments needs further study.  相似文献   

7.
Plasma phospholipid transfer protein (PLTP) plays an important role in the maintenance of plasma high-density lipoprotein (HDL) content and remodeling of HDL in the circulation. In the present study we have used different fractionation methods to investigate the distribution of PLTP in human plasma. A novel enzyme-linked immunosorbent assay developed during the study allowed for simultaneous assessment of both PLTP mass and activity in the fractions obtained. Size-exclusion chromatography and plasma fractionation by nondenaturing polyacrylamide gel electrophoresis (PAGE) yielded similar results demonstrating that PLTP associates in native plasma with two distinct particle populations, while ultracentrifugation with high salt leads to detachment of PLTP from lipoprotein particles and loss of a majority of its phospholipid transfer activity. Interestingly, analysis of the size-exclusion chromatography fractions demonstrated that PLTP exists in the circulation as an active population that elutes in the position of HDL corresponding to an average molecular mass of 160+/-40 kDa and an inactive form with an average mass of 520+/-120 kDa. The inactive fraction containing approximately 70% of the total PLTP protein eluted between HDL and low density lipoprotein (LDL). Thus, the two PLTP pools are associated with different types of lipoprotein particles, suggesting that the PLTP activity in circulation is modulated by the plasma lipoprotein profile and lipid composition.  相似文献   

8.
9.
Phospholipid transfer protein (PLTP) in plasma promotes phospholipid transfer from triglyceride-rich lipoproteins to HDL and plays a major role in HDL remodeling. Recent in vivo observations also support a key role for PLTP in cholesterol metabolism. Our immunohistochemical analysis of human carotid endarterectomy samples identified immunoreactive PLTP in areas that colocalized with CD68-positive macrophages, suggesting that PLTP could be produced locally by intimal macrophages. Using RT-PCR, Western blot analysis with a monoclonal anti-PLTP antibody, and a PLTP activity assay, we observed PLTP mRNA and protein expression in human macrophages. In adherent peripheral blood human macrophages, this PLTP expression was increased by culture with granulocyte macrophage colony-stimulating factor. Incubation of macrophages with acetylated-LDL induced an increase in PLTP mRNA and protein expression that paralleled cholesterol loading. PLTP expression was observed in elicited mouse peritoneal macrophages and in cultured Raw264.7 cells as well. Thus, this study demonstrates that PLTP is expressed by macrophages, is regulated by cholesterol loading, and is present in atherosclerotic lesions.  相似文献   

10.
Plasma phospholipid transfer protein (PLTP) is an important regulator of plasma HDL levels and HDL particle distribution. PLTP is present in plasma in two forms, one with high and the other with low phospholipid transfer activity. We have used the human hepatoma cell line, HepG2, as a model to study PLTP secreted from hepatic cells. PLTP activity was secreted by the cells into serum-free culture medium as a function of time. However, modification of a previously established ELISA assay to include a denaturing sample pretreatment with the anionic detergent sodium dodecyl sulphate was required for the detection of the secreted PLTP protein. The HepG2 PLTP could be enriched by Heparin-Sepharose affinity chromatography and eluted in size-exclusion chromatography at a position corresponding to the size of 160 kDa. PLTP coeluted with apolipoprotein E (apoE) but not with apoB-100 or apoA-I. A portion of PLTP was retained by an anti-apoE immunoaffinity column together with apoE, suggesting an interaction between these two proteins. Furthermore, antibodies against apoE but not those against apoB-100 or apoA-I were capable of inhibiting PLTP activity. These results show that the HepG2-derived PLTP resembles in several aspects the high-activity form of PLTP found in human plasma.  相似文献   

11.
Plasma phospholipid transfer protein (PLTP) interacts with HDL particles and facilitates the transfer of phospholipids from triglyceride (TG)-rich lipoproteins to HDL. Overexpressing human PLTP in mice increases the susceptibility to atherosclerosis. In human plasma, high-active and low-active forms of PLTP exist. To elucidate the contribution of phospholipid transfer activity to changes in lipoprotein metabolism and atherogenesis, we developed mice expressing mutant PLTP, still able to associate with HDL but lacking phospholipid transfer activity. In mice heterozygous for the LDL receptor, effects of the mutant and normal human PLTP transgene (mutPLTP tg and PLTP tg, respectively) were compared. In PLTP tg mice, plasma PLTP activity was increased 2.9-fold, resulting in markedly reduced HDL lipid levels. In contrast, in mutPLTP tg mice, lipid levels were not different from controls. Furthermore, hepatic VLDL-TG secretion was stimulated in PLTP tg mice, but not in mutPLTP tg mice. When mice were fed a cholesterol-enriched diet, atherosclerotic lesion size in PLTP tg mice was increased more than 2-fold compared with control mice, whereas in mutPLTP tg mice, there was no change. Our findings demonstrate that PLTP transfer activity is essential for the development of atherosclerosis in PLTP transgenic mice, identifying PLTP activity as a possible target to prevent atherogenesis, independent of plasma PLTP concentration.  相似文献   

12.
High-density lipoprotein (HDL) apolipoproteins remove excess cholesterol from cells by an active transport pathway that may protect against atherosclerosis. Here we show that treatment of cholesterol-loaded human skin fibroblasts with phospholipid transfer protein (PLTP) increased HDL binding to cells and enhanced cholesterol and phospholipid efflux by this pathway. PLTP did not stimulate lipid efflux in the presence of albumin, purified apolipoprotein A-I, and phospholipid vesicles, suggesting specificity for HDL particles. PLTP restored the lipid efflux activity of mildly trypsinized HDL, presumably by regenerating active apolipoproteins. PLTP-stimulated lipid efflux was absent in Tangier disease fibroblasts, induced by cholesterol loading, and inhibited by brefeldin A treatment, indicating selectivity for the apolipoprotein-mediated lipid removal pathway. The lipid efflux-stimulating effect of PLTP was not attributable to generation of preβ HDL particles in solution but instead required cellular interactions. These interactions increased cholesterol efflux to minor HDL particles with electrophoretic mobility between α and preβ. These findings suggest that PLTP promotes cell-surface binding and remodeling of HDL so as to improve its ability to remove cholesterol and phospholipids by the apolipoprotein-mediated pathway, a process that may play an important role in enhancing flux of excess cholesterol from tissues and retarding atherogenesis.  相似文献   

13.
High-density lipoprotein (HDL) apolipoproteins remove excess cholesterol from cells by an active transport pathway that may protect against atherosclerosis. Here we show that treatment of cholesterol-loaded human skin fibroblasts with phospholipid transfer protein (PLTP) increased HDL binding to cells and enhanced cholesterol and phospholipid efflux by this pathway. PLTP did not stimulate lipid efflux in the presence of albumin, purified apolipoprotein A-I, and phospholipid vesicles, suggesting specificity for HDL particles. PLTP restored the lipid efflux activity of mildly trypsinized HDL, presumably by regenerating active apolipoproteins. PLTP-stimulated lipid efflux was absent in Tangier disease fibroblasts, induced by cholesterol loading, and inhibited by brefeldin A treatment, indicating selectivity for the apolipoprotein-mediated lipid removal pathway. The lipid efflux-stimulating effect of PLTP was not attributable to generation of prebeta HDL particles in solution but instead required cellular interactions. These interactions increased cholesterol efflux to minor HDL particles with electrophoretic mobility between alpha and prebeta. These findings suggest that PLTP promotes cell-surface binding and remodeling of HDL so as to improve its ability to remove cholesterol and phospholipids by the apolipoprotein-mediated pathway, a process that may play an important role in enhancing flux of excess cholesterol from tissues and retarding atherogenesis.  相似文献   

14.
Human atherosclerotic lesions contain mast cells filled with the neutral protease chymase. Here we studied the effect of human chymase on (i) phospholipid transfer protein (PLTP)-mediated phospholipid (PL) transfer activity, and (ii) the ability of PLTP to generate pre-beta-high density lipoprotein (HDL). Immunoblot analysis of PLTP after incubation with chymase for 6 h revealed, in addition to the original 80-kDa band, four specific proteolytic fragments of PLTP with approximate molecular masses of 70, 52, 48, and 31 kDa. This specific pattern of PLTP degradation remained stable for at least 24 h of incubation with chymase. Such proteolyzed PLTP had reduced ability (i) to transfer PL from liposome donor particles to acceptor HDL(3) particles, and (ii) to facilitate the formation of pre-beta-HDL. However, when PLTP was incubated with chymase in the presence of HDL(3), only one major cleavage product of PLTP (48 kDa) was generated, and PL transfer activity was almost fully preserved. Moreover, chymase effectively depleted the pre-beta-HDL particles generated from HDL(3) by PLTP and significantly inhibited the high affinity component of cholesterol efflux from macrophage foam cells. These results suggest that the mast cells in human atherosclerotic lesions, by secreting chymase, may prevent PLTP-dependent formation of pre-beta-HDL particles from HDL(3) and so impair the anti-atherogenic function of PLTP.  相似文献   

15.
Phospholipid lipid transfer protein (PLTP) is ubiquitously expressed in animal tissues and plays multiple roles in lipoprotein metabolism, but the function of peripheral PLTP is still poorly understood. Here we show that one of its possible functions is to transport cholesterol and phospholipids from cells to lipoprotein particles by a process involving PLTP interactions with cellular ATP-binding cassette transporter A1 (ABCA1). When ABCA1 was induced in murine macrophages or ABCA1-transfected baby hamster kidney cells, PLTP gained the ability to promote cholesterol and phospholipid efflux from cells. Although PLTP alone had lipid efflux activity, its maximum activity was observed in the presence of high density lipoprotein particles. Pulsechase studies showed that the interaction of PLTP with ABCA1-expressing cells played a role in promoting lipid efflux. Overexpression of ABCA1 dramatically increased binding of both PLTP and apoA-I to common sites on the cell surface. Both PLTP and apoA-I were covalently cross-linked to ABCA1, each protein blocked cross-linking of the other, and both PLTP and apoA-I stabilized ABCA1 protein. These results are consistent with PLTP and apoA-I binding to ABCA1 at the same or closely related sites. Thus, PLTP mimics apolipoproteins in removing cellular lipids by the ABCA1 pathway, except that PLTP acts more as an intermediary in the transfer of cellular lipids to lipoprotein particles.  相似文献   

16.
Phospholipid transfer protein (PLTP) is a serum glycoprotein with a central role in high-density lipoprotein metabolism. We created a fusion protein in which enhanced green fluorescent protein (EGFP) was fused to the carboxyl-terminus of PLTP. Stably transfected HepG2 cells, which overexpress this fusion protein, were generated. PLTP-EGFP was translocated into the ER and fluoresced within the biosynthetic pathway, showing a marked concentration in the Golgi complex. The transfected cells secreted into the growth medium phospholipid transfer activity 7-fold higher than that of the mock-transfected controls. The medium of the PLTP-EGFP - expressing cells displayed EGFP fluorescence, demonstrating that both the PLTP and the EGFP moieties had attained a biologically active conformation. However, the specific activity of PLTP-EGFP in the medium was markedly reduced as compared with that of endogenous PLTP. This suggests that the EGFP attached to the carboxyl-terminal tail of PLTP interferes with the interaction of PLTP with its substrates or with the lipid transfer process itself. Fluorescently tagged PLTP is a useful tool for elucidating the intracellular functions of PLTP and the interaction of exogenously added PLTP with cells, and will provide a means of monitoring the distribution of exogenously added PLTP between serum lipoprotein subspecies.  相似文献   

17.
alpha-tocopherol, the most potent antioxidant form of vitamin E, is mainly bound to lipoproteins in plasma and its incorporation into the vascular wall can prevent the endothelium dysfunction at an early stage of atherogenesis. In the present study, the plasma phospholipid transfer protein (PLTP) was shown to promote the net mass transfer of alpha-tocopherol from high density lipoproteins (HDL) and alpha-tocopherol-albumin complexes toward alpha-tocopherol-depleted, oxidized low density lipoproteins (LDL). The facilitated transfer reaction of alpha-tocopherol could be blocked by specific anti-PLTP antibodies. These observations indicate that PLTP may restore the antioxidant potential of plasma LDL at an early stage of the oxidation cascade that subsequently leads to cellular damages. In addition, the present study demonstrated that the PLTP-mediated net mass transfer of alpha-tocopherol can constitute a new mechanism for the incorporation of alpha-tocopherol into the vascular wall in addition to the previously recognized LDL receptor and lipoprotein lipase pathways. In ex vivo studies on rabbit aortic segments, the impairment of the endothelium-dependent arterial relaxation induced by oxidized LDL was found to be counteracted by a pretreatment with purified PLTP and alpha-tocopherol-albumin complexes, and both the maximal response and the sensitivity to acetylcholine were significantly improved. We conclude that PLTP, by supplying oxidized LDL and endothelial cells with alpha-tocopherol through a net mass transfer reaction may play at least two distinct beneficial roles in preventing endothelium damage, i.e., the antioxidant protection of LDL and the preservation of a normal relaxing function of vascular endothelial cells.  相似文献   

18.
We reported that phospholipid transfer protein (PLTP) deficiency decreased atherosclerosis in mouse models. Because the decreased atherosclerosis was accompanied by a significant decrease in plasma HDL levels, we examined the properties of PLTP knockout (PLTP0) HDL and tested its ability to prevent LDL-induced monocyte chemotactic activity in human artery wall cell cocultures. We isolated HDL and LDL from LDL receptor knockout/PLTP knockout (LDLr0/PLTP0) mice and from apolipoprotein B transgenic (apoBTg)/PLTP0 mice as well as their controls. PLTP0 HDL was relatively rich in protein and depleted in phosphatidylcholine. Turnover studies revealed a 3.5- to 4.0-fold increase in the turnover of protein and cholesteryl ester in HDL from PLTP0 mice compared with control mice. The ability of HDL from LDLr0/PLTP0 and apoBTg/PLTP0 mice to prevent the induction of monocyte chemotactic activity in human artery wall cell cocultures exposed to human LDL was dramatically better than that in controls. Moreover, LDL from PLTP0 mice was markedly resistant to oxidation and induced significantly less monocyte chemotactic activity compared with that in controls. In vitro, PLTP0 HDL removed significantly more oxidized phospholipids from LDL than did control HDL. We conclude that PLTP deficiency improves the anti-inflammatory properties of HDL in mice and reduces the ability of LDL to induce monocyte chemotactic activity.  相似文献   

19.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids among lipoproteins. Over half of the PLTP in human plasma has been found to have little phospholipid transfer activity (inactive PLTP). We recently observed that plasma PLTP specific activity is inversely correlated with high-density lipoprotein (HDL) level and particle size in healthy adults. The purpose of this study was to evaluate the factors that contribute to the variation in plasma PLTP specific activity. Analysis of the specific activity of PLTP complexes in nine plasma samples from healthy adults revealed two clusters of inactive PLTP complexes with mean molecular weights (MW) of 342kDa and 146kDa. The large and small inactive PLTP complexes represented 52±8% (range 39-63%) and 8±8% (range 1-28%) of the plasma PLTP, respectively. Active PLTP complexes had a mean MW of 207kDa and constituted 40±6% (range 33-50%) of the plasma PLTP. The specific activity of active PLTP varied from 16 to 32μmol/μg/h. These data demonstrate for the first time the existence of small inactive plasma PLTP complexes. Variation in the amount of the two clusters of inactive PLTP complexes and the specific activity of the active PLTP contribute to the variation in plasma PLTP specific activity.  相似文献   

20.
The full-length cDNA of a phospholipid transfer protein (PLTP) was isolated from Aspergillus oryzae by a RACE-PCR procedure using degenerated primer pool selected from the N-terminal sequence of the purified phosphatidylinositol/phosphatidylglycerol transfer protein (PG/PI-TP). The cDNA encodes a 173 amino acid protein of 18823 Da. The deduced amino acid sequence from position 38 to 67 is 100% identical to the N-terminal sequence (first 30 amino acids) of the purified PG/PI-TP. This amino acid sequence is preceded by a leader peptide of 37 amino acids which is predicted to be composed of a signal peptide of 21 amino acids followed by an extra-sequence of 16 amino acids, or a membrane anchor protein signal (amino acid 5-29). This strongly suggests that the PG/PI-TP is a targeted protein. The deduced mature protein is 138 amino acids long with a predicted molecular mass of 14933 Da. Comparison of the deduced PG/PI-TP sequence with other polypeptide sequences available in databases revealed a homology with a protein deduced from an open reading frame coding for an unknown protein in Saccharomyces cerevisiae (36% identity and 57% similarity). Apart from this homology, the PG/PI-TP is unique and specific to the filamentous fungi on the basis of comparison of PLTP protein sequences. Northern blot analysis of RNA isolated from A. oryzae cultures grown on glucose or glucose supplemented with phospholipids suggests that the PG/PI-TP is transcribed by only one RNA species and allows us to show that expression of the protein is regulated at the messenger RNA level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号