首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peripheral P2.1 domain of the Tetrahymena group I intron ribozyme has been shown to be non-essential for splicing. We found, however, that separately prepared P2.1 RNA efficiently accelerates the 3' splice-site-specific hydrolysis reaction of a mutant ribozyme lacking both P2.1 and its upstream region in trans. We report here the unusual properties of this trans-activation. Compensatory mutational analysis revealed that non-native long-range base-pairings between the loop region of P2.1 RNA and L5c region of the mutant ribozyme are needed for the activation in spite of the fact that P2.1 forms base-pairings with P9.1 in the Tetrahymena ribozyme. The trans -activation depends on the non-native RNA-RNA interaction together with the higher order structure of P2.1 RNA. This activation is unique among the known trans-activations that utilize native tertiary interactions or RNA chaperons.  相似文献   

2.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

3.
RNA is one class of relatively unexplored drug targets. Since RNAs play a myriad of essential roles, it is likely that new drugs can be developed that target RNA. There are several factors that make targeting RNA particularly attractive. First, the amount of information about the roles of RNA in essential biological processes is currently being expanded. Second, sequence information about targetable RNA is pouring out of genome sequencing efforts at unprecedented levels. Third, designing and screening potential oligonucleotide therapeutics to target RNA is relatively simple. The use of oligonucleotides in cell culture, however, presents several challenges such as oligonucleotide uptake and stability, and selective targeting of genes of interest. Here, we review investigations aimed at targeting RNA with oligonucleotides that can circumvent several of these potential problems. The hallmark of the strategies discussed is the use of short oligonucleotides, which may have the advantage of higher cellular uptake and improved binding selectivity compared to longer oligonucleotides. These strategies have been applied to Group I introns from the mammalian pathogens Pneumocystis carinii and Candida albicans. Both are examples of fungal infections that are increasing in number and prevalence.  相似文献   

4.
Disney MD  Testa SM  Turner DH 《Biochemistry》2000,39(23):6991-7000
Pneumocystis carinii is a mammalian pathogen that contains a self-splicing group I intron in its large subunit rRNA precursor. We report the binding of methylphosphonate/DNA chimeras and neutral methylphosphonate oligonucleotides to a ribozyme that is a truncated form of the intron. At 15 mM Mg(2+), the nuclease-resistant all-methylphosphonate hexamer, d(AmTmGmAmCm)rU, with a sequence that mimics the 3' end of the precursor's 5' exon, binds with a dissociation constant of 272 nM. The hexamer's dissociation constant for binding by base-pairing alone to the ribozyme's binding site sequence is 8.3 mM. Thus there is a 30 000-fold binding enhancement by tertiary interactions (BETI), which is close to the 60 000-fold enhancement previously observed with the all-ribo hexamer, r(AUGACU). Evidently, backbone charge and 2' hydroxyl groups are not required for BETI. At 3-15 mM Mg(2+), the all-methylphosphonate and DNA oligonucleotides trans-splice to a truncated form of the rRNA precursor, but do not compete with cis-splicing when pG is present. These results suggest that uncharged or partially charged backbones may be used to design therapeutics to target RNAs through binding enhancement by tertiary interactions and suicide inhibition strategies.  相似文献   

5.
6.
7.
The third intron from Physarum polycephalum (Pp LSU 3) is one of the closest known relatives to the well-studied Tetrahymena group I intron. Both introns are located at the same position in the 26S rRNA gene, and with the exception of an open reading frame in Pp LSU 3, are highly homologous. While Pp LSU 3 has been shown to self splice, little is known about its activity in vitro. We have examined the requirements for self splicing in greater detail. Despite its similarity to the Tetrahymena intron, Pp LSU 3 is 1500-fold less reactive, demonstrates a preference for high salt, and exhibits a low Km for GTP. Removal of the open reading frame results in a modest increase of activity. This system provides an opportunity to understand how sequence variations in two related introns alter the efficiency of autoexcision, and how this relates to adaptation of group I introns to their particular sequence context.  相似文献   

8.
Several different approaches have been used in an attempt to define and analyse the thermodynamics of microbial growth in bioreactor culture. While thermodynamic theory has been developed sufficiently to enable satisfactory prediction of biomass and catabolic-product yield, prediction of non-catabolicproduct yield and growth kinetics has proven less successful. Further research in this area is required to develop models that would be useful in process design and optimization.  相似文献   

9.
Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg(2+) and K(+) ions. Five of the metals bind within 12 A of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.  相似文献   

10.
11.
A A Beaudry  G F Joyce 《Biochemistry》1990,29(27):6534-6539
We have completed a comprehensive deletion analysis of the Tetrahymena ribozyme in order to define the minimum secondary structure requirements for phosphoester transfer activity of a self-splicing group I intron. A total of 299 nucleotides were removed in a piecewise fashion, leaving a catalytic core of 114 nucleotides that form 7 base-paired structural elements. Among the various deletion mutants are a 300-nucleotide single-deletion mutant and a 281-nucleotide double-deletion mutant whose activity exceeds that of the wild type when tested under physiologic conditions. Consideration of those structural elements that are essential for catalytic activity leads to a simplified secondary structure model of the catalytic core of a group I intron.  相似文献   

12.
Lysinomicin, a naturally-occurring pseudodisaccharide, inhibits translation in prokaryotes. We report that lysinomicin (and three related compounds) are able to inhibit the self-splicing of group I introns, thus identifying pseudodisaccharides as a novel class of group I intron splicing inhibitors. Lysinomicin inhibited the self-splicing of the sunY intron of phage T4 with a Ki of 8.5 microM (+/- 5 microM) and was active against other group I introns. Inhibition was found to be competitive with the substrate guanosine, unlike aminoglycoside antibiotics, which act non-competitively to inhibit the splicing of group I introns. Competitive inhibitors of group I intron splicing known to date all contain a guanidino group that was thought to be required for inhibition; lysinomicin lacks a guanidino group.  相似文献   

13.
The terminal intron (bI2) of the yeast mitochondrial cytochrome b gene is a group I intron capable of self-splicing in vitro at high concentrations of Mg2+. Excision of bI2 in vivo, however, requires a protein encoded by the nuclear gene CBP2. The CBP2 protein has been partially purified from wild-type yeast mitochondria and shown to promote splicing at physiological concentrations of Mg2+. The self-splicing and protein-dependent splicing reactions utilized a guanosine nucleoside cofactor, the hallmark of group I intron self-splicing reactions. Furthermore, mutations that abolished the autocatalytic activity of bI2 also blocked protein-dependent splicing. These results indicated that protein-dependent excision of bI2 is an RNA-catalyzed process involving the same two-step transesterification mechanism responsible for self-splicing of group I introns. We propose that the CBP2 protein binds to the bI2 precursor, thereby stabilizing the catalytically active structure of the RNA. The same or a similar RNA structure is probably induced by high concentrations of Mg2+ in the absence of protein. Binding of the CBP2 protein to the unspliced precursor was supported by the observation that the protein-dependent reaction was saturable by the wild-type precursor. Protein-dependent splicing was competitively inhibited by excised bI2 and by a splicing-defective precursor with a mutation in the 5' exon near the splice site but not by a splicing-defective precursor with a mutation in the core structure. Binding of the CBP2 protein to the precursor RNA had an effect on the 5' splice site helix, as evidenced by suppression of the interaction of an exogenous dinucleotide with the internal guide sequence.  相似文献   

14.
15.
The J4/5 loop of the group I intron in the mouse-derived fungal pathogen Pneumocystis carinii is the docking site for the first step of the RNA-catalyzed self-splicing reaction and thus is a model of a potential drug target. This purine-rich asymmetric internal loop, 5'GGAAG/3'UAGU, is also thermodynamically more stable than other internal loops with two GU closing pairs and three nucleotides opposite two nucleotides. The results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments suggest that the GU closing pairs form and that sheared GA pairs form in the internal loop. The NMR spectra show evidence of conformational dynamics, and several GA pairings are possible. Thus, this dynamic loop presents several possible structures for potential binding of drugs that target group I self-splicing introns. The results also contribute to understanding the structural and dynamic basis for the function and thermodynamic stability of this loop.  相似文献   

16.
Oligonucleotides containing 3'-S-phosphorothiolate linkages provide valuable analogues for exploring the catalytic mechanisms of enzymes and ribozymes, both to identify catalytic metal ions and to probe hydrogen-bonding interactions. Here, we have synthesized 2'-O-methyl-3'-thioguanosine to test a possible hydrogen-bonding interaction in the Tetrahymena ribozyme reaction. We developed an efficient method for the synthesis of 2'-O-methyl-3'-thioguanosine phosphoramidite in eight steps starting from 2'-O-methyl-N(2)-(isobutyryl) guanosine with 10.4% overall yield. Following incorporation into oligonucleotides using solid-phase synthesis, we used this new analogue to investigate whether the 3'-oxygen of the guanosine cofactor in the Tetrahymena ribozyme reaction serves as an acceptor for the hydrogen bond donated by the adjacent 2'-hydroxyl group. We show that regardless of whether the guanosine cofactor bears a 3'-oxygen or 3'-sulfur leaving group, replacing the adjacent 2'-hydroxyl group with a 2'-methoxy group incurs the same energetic penalty, providing evidence against an interaction. These results indicate that the hydrogen bond donated by the guanosine 2'-hydroxyl group contributes to catalytic function in a manner distinct from the U(-1) 2'-hydroxyl group.  相似文献   

17.
Divalent metal ions play a crucial role in RNA structure and catalysis. Phosphorothioate substitution and manganese rescue experiments can reveal phosphate oxygens interacting specifically with magnesium ions essential for structure and/or activity. In this study, phosphorothioate interference experiments in combination with structural sensitive circular dichroism spectroscopy have been used to probe molecular interactions underlying an important RNA structural motif. We have studied a synthetic model of the P4-P6 triple-helical domain in the bacteriophage T4 nrdB group I intron, which has a core sequence analogous to the Tetrahymena ribozyme. Rp and Sp sulfur substitutions were introduced into two adjacent nucleotides positioned at the 3' end of helix P6 (U452) and in the joining region J6/7 (U453). The effects of sulfur substitution on triple helix formation in the presence of different ratios of magnesium and manganese were studied by the use of difference circular dichroism spectroscopy. The results show that the pro-Sp oxygen of U452 acts as a ligand for a structurally important magnesium ion, whereas no such effect is seen for the pro-Rp oxygen of U452. The importance of the pro-Rp and pro-Sp oxygens of U453 is less clear, because addition of manganese could not significantly restore the triple-helical interactions within the isolated substituted model systems. The interpretation is that U453 is so sensitive to structural disturbance that any change at this position hinders the proper formation of the triple helix.  相似文献   

18.
The second intron (bi2) of the cyt b gene from related Saccharomyces species has an extraordinarily conserved sequence and can have different functions in wild-type cells. The protein encoded by the S. cerevisiae intron functions as a maturase to promote intron splicing, while the homologous S. capensis intron encodes a bifunctional protein that acts both as a maturase and as a homing endonuclease (I-ScaI) promoting intron mobility. The protein encoded by intron bi2 belongs to a large gene family characterized by the presence of two conserved LAGLIDADG motifs (P1 and P2). In this study, we analysed a set of splicing-deficient mutants of the S. cerevisiae intron bi2 that carry non-directed mutations affecting the maturase activity, and a set of directed missense mutations introduced into the bifunctional protein encoded by the S. capensis intron. Analysis of these mutations has allowed identification of the residues in the conserved P1 and P2 motifs which are crucial for splicing and homing activities. Moreover, several mutations which are located in the C-terminal part of the protein have been found to affect both functions.  相似文献   

19.
RNA molecules have an inherent flexibility that enables recognition of other interacting partners through potential disorder-order transitions, yet studies to quantify such motional dynamics remain few. With an increasing database of three-dimensional structures of biologically important RNA molecules, quantifying such motions becomes important to link structural deformations with function. One such system studied intensely is domain 5 (D5) from the self-splicing group II introns, which is at the heart of its catalytic machinery. We report the dynamics of a 36 nucleotide D5 from the Pylaiella littoralis group II intron in the presence and absence of magnesium ions, and at a range of temperatures (298K-318 K). Using high-resolution NMR experiments of heteronuclear nuclear Overhauser enhancement (NOE), spin-lattice (R(1)), and spin-spin (R(2)) (13)C relaxation rates, we determined the rotational diffusion tensor of D5 using the ROTDIF program modified for RNA dynamic analysis (ROTDIF_RNA). The D5 rotational diffusion tensor has an axial symmetric ratio (D(||)/D(perpendicular)) of 1.7+/-0.3, consistent with an estimated overall rotational correlation time of tau(m)=(2D(||)+4D(perpendicular))(-1) of 6.1(+/-0.3) ns at 298 K and 4.1(+/-0.2) ns at 318 K. The measured relaxation data were analyzed with the reduced spectral density mapping formalism using assumed values of the chemical shift anisotropy of the (13)C spins. Both the relaxation data and the values of the spectral density function reveal that the functional groups in D5 implicated in magnesium ion binding and catalysis (catalytic triad, internal bulge, and tetraloop regions) exhibit thermally induced motion on a wide variety of timescales. Because these motions parallel those observed in the intramolecular stem-loop of the U6 element within the spliceosome, we hypothesize that such extensive dynamic disorder likely facilitates D5 engaging both binding and catalytic regions of the ribozyme, and these may be a conserved feature of the catalytic machinery essential for catalysis.  相似文献   

20.
Group I introns are proposed to have become mobile following the acquisition of open reading frames (ORFs) that encode highly specific DNA endonucleases. This proposal implies that intron ORFs could behave as autonomously mobile entities. This was supported by abundant circumstantial evidence but no experiment of ORF transfer from an ORF- containing intron to its ORF-less counterpart has been described. In this paper we present such experiments, which demonstrate the efficient mobility of the mitochondrial nad1-i4-orf1 between two Podospora strains. The homing of this mobile ORF was accompanied by a bidirectional co-conversion that did not systematically involve the whole intron sequence. Orf1 acquisition would be the most recent step in the evolution of the nad1-i4 intron, which has resulted in many strains of Podospora having an intron with two ORFs (biorfic) and four splicing pathways. We show that two of the splicing events that operate in this biorfic intron, as evidenced by PCR experiments, are generated by a 5'-alternative splice site, which is most probably a remnant of the monoorfic ancestral form of the intron. We propose a sequential evolution model that is consistent with the four organizations of the corresponding nad1 locus that we found among various species of the Pyrenomycete family; these organizations consist of no intron, an intron alone, a monoorfic intron, and a biorfic intron.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号