首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oysters collected in late winter, when they were free of Vibrio vulnificus, were exposed in the organism in the laboratory. The oysters effectively concentrated the bacteria from seawater, but when the inoculum was removed, the bacteria were rapidly cleared from the oyster tissues. These results suggest that V. vulnificus may be found in oysters as a result of filtration of the bacteria from seawater rather than active multiplication of the bacteria in the oysters.  相似文献   

2.
An oligonucleotide DNA probe (VVAP) was constructed from a portion of the Vibrio vulnificus cytolysin gene (hylA) sequence and labeled with alkaline phosphatase covalently linked to the DNA. Control and environmental isolates probed with VVAP showed an exact correlation with results obtained with a plasmid DNA probe (derived from pCVD702) previously described as having 100% specificity and sensitivity for this organism. Identification of V. vulnificus strains was confirmed independently by analysis of the cellular fatty acid composition and by API 20E. Naturally occurring V. vulnificus bacteria were detected without enrichment or selective media by VVAP in unseeded oyster homogenates and seawater collected from a single site in Chesapeake Bay during June at concentrations of 6 x 10(2) and 2 x 10(1) bacteria per ml, respectively. V. vulnificus bacteria were also enumerated by VVAP in oysters seeded with known concentrations of bacteria and plated on nonselective medium. The VVAP method provides a rapid, accurate means of identifying and enumerating V. vulnificus in seawater and oysters without the use of selective media or additional biochemical tests.  相似文献   

3.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

4.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

5.
When two species of shellstock oysters were artificially contaminated with Vibrio vulnificus, the bacterium survived when the oysters were stored at 10 degrees C and below. Large numbers of endogenous V. vulnificus cells were found after 7 days at both 0.5 and 10 degrees C in uninoculated control oysters (Crassostrea virginica). Oysters allowed to take up V. vulnificus from seawater retained the bacterium for 14 days at 2 degrees C. The presence of V. vulnificus in the drip exuded from the shellstock presented a possibility of contamination of other shellstock in storage. V. vulnificus injected into shucked Pacific (Crassostrea gigas) and Eastern (C. virginica) oysters survived at 4 degrees C for at least 6 days. An 18-h most-probable-number enrichment step in alkaline peptone water gave higher recovery levels of V. vulnificus than did direct plating to selective agars. The survival of this pathogen in both shellstock and shucked oysters suggests a potential for human illness, even though the product is refrigerated.  相似文献   

6.
When two species of shellstock oysters were artificially contaminated with Vibrio vulnificus, the bacterium survived when the oysters were stored at 10 degrees C and below. Large numbers of endogenous V. vulnificus cells were found after 7 days at both 0.5 and 10 degrees C in uninoculated control oysters (Crassostrea virginica). Oysters allowed to take up V. vulnificus from seawater retained the bacterium for 14 days at 2 degrees C. The presence of V. vulnificus in the drip exuded from the shellstock presented a possibility of contamination of other shellstock in storage. V. vulnificus injected into shucked Pacific (Crassostrea gigas) and Eastern (C. virginica) oysters survived at 4 degrees C for at least 6 days. An 18-h most-probable-number enrichment step in alkaline peptone water gave higher recovery levels of V. vulnificus than did direct plating to selective agars. The survival of this pathogen in both shellstock and shucked oysters suggests a potential for human illness, even though the product is refrigerated.  相似文献   

7.
Distribution of Vibrio vulnificus in the Chesapeake Bay.   总被引:10,自引:1,他引:9       下载免费PDF全文
Vibrio vulnificus is a potentially lethal human pathogen capable of producing septicemia in susceptible persons. Disease is almost always associated with consumption of seafood, particularly raw oysters, or with exposure of wounds to seawater. An oligonucleotide DNA probe (V. vulnificus alkaline phosphatase-labeled DNA probe [VVAP]), previously shown to be highly specific for V. vulnificus, was used to enumerate this species in environmental samples collected from the Chesapeake Bay between April 1991 and December 1992. Total aerobic, heterotrophic, culturable bacteria were enumerated by plate counts on nonselective medium. The number of V. vulnificus organisms was determined by colony lifts of spread plates for subsequent hybridization with VVAP. V. vulnificus was not detected in any samples collected during February and March (water temperature of < 8 degrees C) but was found in 80% of the water samples collected during May, July, September, and December (water temperature of > 8 degrees C), with concentrations ranging from 3.0 x 10(1) to 2.1 x 10(2)/ml (ca. 8% of the total culturable heterotrophic bacteria). In a multiple regression analysis, increased V. vulnificus concentrations were correlated with lower salinities and with isolation from samples collected closer to the bottom. Isolation from oysters was demonstrable when water temperatures were 7.6 degrees C, with concentrations ranging from 1.0 x 10(3) to 4.7 x 10(4)/g (ca. 12% of total culturable bacteria). In samples collected in May and July, V. vulnificus was identified in seven of seven plankton samples and four of nine sediment samples. Our data demonstrate that V. vulnificus is a widespread and important component of the bacterial population of the Chesapeake Bay, with counts that are comparable to those reported from the Gulf of Mexico.  相似文献   

8.
Certain indigenous estuarine bacteria, such as Vibrio vulnificus, may cause opportunistic human infections after consumption of raw oysters or exposure of tissues to seawater. V. vulnificus is known to be closely associated with oyster (Crassostrea virginica) tissues and is not removed by controlled purification methods, such as UV light-assisted depuration. In fact, when live shellfish are subjected to controlled purification, the number of V. vulnificus cells can markedly increase. A review of previous studies showed that few workers have examined mechanisms in oysters which may influence the persistence of V. vulnificus in shellfish, such as the fate of V. vulnificus following phagocytosis by molluscan hemocytes. The objectives of this study were to define the intracellular viability and extracellular viability of V. vulnificus during the phagocytic process and to study the release of specific lysosomal enzymes. The viability of a virulent estuarine V. vulnificus isolate with opaque morphology was compared with the viability of a translucent, nonvirulent form, the viability of Vibrio cholerae, and the viability of Escherichia coli in phagocytosis experiments. Our results showed that the levels of phagocytosis and bactericidal degradation of the opaque V. vulnificus isolate were less than the levels of phagocytosis and bactericial degradation of the translucent morphotype. These findings indicate that encapsulation may contribute to resistance to ingestion and degradation by hemocytes. The rates of intracellular death of V. cholerae and E. coli exceeded the rate of intracellular death of the opaque V. vulnificus isolate, even though the ingestion or uptake rates did not differ significantly. The levels of lysozyme activity and acid phosphatase activity were not significantly different in hemocyte monolayers inoculated with V. vulnificus.  相似文献   

9.
Opaque and translucent morphotypes of a TnphoA-containing strain of Vibrio vulnificus were fed to oysters, which were subsequently stored at temperatures ranging from 0.5 to 22 degrees C for 10 days. Samples of oysters were homogenized and plated at intervals to determine the cell density of V. vulnificus and total aerobic population of bacteria present. At all temperatures, the numbers of V. vulnificus (both morphotypes) declined over the 10-day study period. The same observation was made with a lower inoculum of V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus to levels below limits of detection. Little change in the total bacterial counts was observed in shellstock oysters at any of the test temperatures, whereas incubation at the higher temperatures (17 and 22 degrees C) resulted in large increases in total counts in shucked oysters. These data suggest that temperature abuse of oysters may not be a factor in increasing the public health risk of V. vulnificus through raw oyster consumption. However, the data also suggest that even with proper storage, indigenous levels of V. vulnificus may remain sufficiently higher in shellstock oysters to produce infection in compromised hosts.  相似文献   

10.
Opaque and translucent morphotypes of a TnphoA-containing strain of Vibrio vulnificus were fed to oysters, which were subsequently stored at temperatures ranging from 0.5 to 22 degrees C for 10 days. Samples of oysters were homogenized and plated at intervals to determine the cell density of V. vulnificus and total aerobic population of bacteria present. At all temperatures, the numbers of V. vulnificus (both morphotypes) declined over the 10-day study period. The same observation was made with a lower inoculum of V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus to levels below limits of detection. Little change in the total bacterial counts was observed in shellstock oysters at any of the test temperatures, whereas incubation at the higher temperatures (17 and 22 degrees C) resulted in large increases in total counts in shucked oysters. These data suggest that temperature abuse of oysters may not be a factor in increasing the public health risk of V. vulnificus through raw oyster consumption. However, the data also suggest that even with proper storage, indigenous levels of V. vulnificus may remain sufficiently higher in shellstock oysters to produce infection in compromised hosts.  相似文献   

11.
Densities of Vibrio vulnificus in the intestinal contents of various finfish, oysters, and crabs and in sediment and waters of the U.S. Gulf Coast were determined by the most probable number procedure. Species were identified by enzyme immunoassay. During the winter, densities of V. vulnificus were low, and the organism was isolated more frequently from sheepshead fish than from sediment and seawater. From April to October, V. vulnificus densities were considerably higher (2 to 5 logs) in estuarine fish than in surrounding water, sediment, or nearby oysters and crustacea. Highest densities were found in the intestinal contents of certain bottom-feeding fish (10(8)/100 g), particularly those that consume mollusks and crustaceans. Densities of V. vulnificus in fish that feed primarily on plankton and other finfish were similar to those in oysters, sediment, and crabs (10(5)/100 g). V. vulnificus was found infrequently in offshore fish. The presence of high densities of V. vulnificus in the intestines of common estuarine fish may have both ecological (growth and transport) and public health (food and wound infections) implications.  相似文献   

12.
The TaqMan assay, a quantitative real-time polymerase chain reaction (PCR), was developed to target the ToxR gene (toxR) of Vibrio vulnificus. The toxR of V. vulnificus was cloned and sequenced. Based on these results, we designed specific primers and a probe for use in the quantitative PCR assay. Twenty-nine strains of V. vulnificus that were obtained from various sources produced a single PCR product. The amount of final amplification product and threshold cycle number were the same among the strains. We used the method to detect V. vulnificus in seawater and oyster samples. We developed standard curves to quantitate V. vulnificus numbers using the PCR from seawater and oyster samples. The standard curves were not different from that of the pure culture of V. vulnificus. We found the assay was very sensitive detecting as few as 10 microbes per milliliter of seawater and oyster homogenate. Moreover, we evaluated the TaqMan assay to detect V. vulnificus in seawater samples. The numbers of V. vulnificus counted by the TaqMan assay were similar to those by a culture method in almost samples. The TaqMan assay was performed within 2 h compared to days using the culture method. The results indicate the TaqMan assay method used in this study was rapid, effective and quantitative for monitoring V. vulnificus contamination in seawater and seafoods such as oysters.  相似文献   

13.
Phages lytic to Vibrio vulnificus were found in estuarine waters, sediments, plankton, crustacea, molluscan shellfish, and the intestines of finfish of the U.S. Gulf Coast, but no apparent relationship between densities of V. vulnificus and its phages was observed. Phage diversity and abundance in molluscan shellfish were much greater than in other habitats. V. vulnificus phages isolated from oysters did not lyse other mesophilic bacteria also isolated from oysters. Both V. vulnificus and its phages were found in a variety of oyster tissues and fluids with lowest densities in the hemolymph and mantle fluid. These findings suggest a close ecological relationship between V. vulnificus phages and molluscan shellfish.  相似文献   

14.
Vibrio vulnificus hemolysin, purified by quantitative isoelectric focusing, was used to prepare rabbit and goat anti-hemolysin. The resulting antibodies were used as capture and detector antibody reagents in a sandwich enzyme-linked immunosorbent assay (ELISA) to detect V. vulnificus in environmental samples. By this technique, 4 laboratory-maintained V. vulnificus strains and 33 environmental V. vulnificus isolates were detected. Also, the technique distinguished five other Vibrio species from V. vulnificus, and when it was used in combination with colistin-polymyxin-cellobiose agar, 31 non-V. vulnificus isolated were excluded. This sandwich ELISA compared favorably with the current Food and Drug Administration standard immunoassay in confirming presumptive V. vulnificus colonies from environmental specimens: oysters, sediment, and seawater. Among 340 presumptive V. vulnificus colonies, the sandwich ELISA detected 95% of the confirmed V. vulnificus colonies. Equally important, the technique correctly distinguished 99% of the non-V. vulnificus colonies. The sandwich ELISA offers time-saving and labor-saving advantages over the currently accepted immunoassay.  相似文献   

15.
Sterilized seawater was used to assess the effects of temperature and salinity on the survival of Vibrio vulnificus. In the temperature range of 13 to 22 degrees C, numbers of V. vulnificus increased during the 6-day incubation. Temperatures outside this range reduced the time of V. vulnificus survival in sterile 10-ppt seawater. At these restrictive temperatures, V. vulnificus numbers were reduced by 90% after 6 days of incubation. Incubation between 0.5 and 10.5 degrees C demonstrated that V. vulnificus survives poorly below 8.5 degrees C. At salinities between 5 and 25 ppt and at 14 degrees C, V. vulnificus numbers actually increased or remained unchanged after 6 days of incubation. At salinities of 30, 35, and 38 ppt, numbers of V. vulnificus decreased 58, 88, and 83%, respectively. V. vulnificus could not be recovered from deionized water, indicating lysis. When a rifampin-resistant strain of V. vulnificus was used to inoculate sterilized and unsterilized seawater (20 ppt, 20 degrees C), numbers increased in sterile seawater but decreased to undetectable levels in 14 days in the unsterilized seawater, indicating that biological factors may play a role in the survival of V. vulnificus in the environment. Since our studies demonstrated sensitivity to low temperatures, the survival of V. vulnificus in naturally contaminated oysters at temperatures of 0, 2, and 4 degrees C was also determined. Numbers of endogenous V. vulnificus in oyster shellstock increased by more than 100-fold in shellstock stored at 30 degrees C but were reduced approximately 10- and 100-fold after 14 days at 2 to 4 degrees C and 0 degrees C, respectively. We conclude that both biological and physicochemical factors are important to the survival of V. vulnificus in the environment and that temperature is critical to controlling its growth in oyster shellstock.  相似文献   

16.
Despite years of successful isolation of Vibrio vulnificus from estuarine waters, beginning in 2007, it was extremely difficult to culture V. vulnificus from either North Carolina estuarine water or oyster samples. After employing culture-based methods as well as PCR and quantitative PCR for the detection of V. vulnificus, always with negative results, we concluded that this pathogen had become nearly undetectable in the North Carolina estuarine ecosystem. We ensured that the techniques were sound by seeding North Carolina oysters with V. vulnificus and performing the same tests as those previously conducted on unadulterated oysters. V. vulnificus was readily detected in the seeded oysters using both classes of methods. Furthermore, oysters were obtained from the Gulf of Mexico, and V. vulnificus was easily isolated, confirming that the methodology was sound but that the oysters and waters of North Carolina were lacking the V. vulnificus population studied for decades. Strikingly, the apparent loss of detectable V. vulnificus coincided with the most severe drought in the history of North Carolina. The drought continued until the end of 2009, with an elevated water column salinity being observed throughout this period and with V. vulnificus being nearly nonexistent. When salinities returned to normal after the drought abated in 2010, we were again able to routinely isolate V. vulnificus from the water column, although we were still unable to culture it from oysters. We suggest that the oysters were colonized with a more salt-tolerant bacterium during the drought, which displaced V. vulnificus and may be preventing recolonization.  相似文献   

17.
Historically, methods used to identify Vibrio vulnificus in environmental samples have been inadequate because isolation and identification procedures are time-consuming and fail to separate V. vulnificus from other bacterial species. We describe an enzyme immunoassay (EIA) and culture techniques which identified V. vulnificus in seawater, sediment, and oysters. The EIA used monoclonal antibody FRBT37 to a species-specific epitope of V. vulnificus. No cross-reactions were observed among 72 non-V. vulnificus strains comprising 34 species and 15 genera. In field trials, the EIA identified correctly 99.7% of 348 biochemically confirmed V. vulnificus isolates. The epitope corresponding to FRBT37 was found in cells lysed by Triton X-100, deionized H2O, and ultrasonication but was not found in culture supernatants, indicating that its location was intracellular. In addition, electron micrographs of V. vulnificus labeled with FRBT37-biotin-avidin-gold showed that epitope FRBT37 reacted with fragments of lysed cells but not whole cells. FRBT37 was expressed when V. vulnificus was cultured in different growth media. The minimum level of detection of the EIA was approximately 2,000 V. vulnificus cells per EIA well. Epitope FRBT37 was labile at 70 degrees C for 30 min. Immunoblot and EIA plate formats reduced assay time and facilitated handling large numbers of test samples.  相似文献   

18.
Historically, methods used to identify Vibrio vulnificus in environmental samples have been inadequate because isolation and identification procedures are time-consuming and fail to separate V. vulnificus from other bacterial species. We describe an enzyme immunoassay (EIA) and culture techniques which identified V. vulnificus in seawater, sediment, and oysters. The EIA used monoclonal antibody FRBT37 to a species-specific epitope of V. vulnificus. No cross-reactions were observed among 72 non-V. vulnificus strains comprising 34 species and 15 genera. In field trials, the EIA identified correctly 99.7% of 348 biochemically confirmed V. vulnificus isolates. The epitope corresponding to FRBT37 was found in cells lysed by Triton X-100, deionized H2O, and ultrasonication but was not found in culture supernatants, indicating that its location was intracellular. In addition, electron micrographs of V. vulnificus labeled with FRBT37-biotin-avidin-gold showed that epitope FRBT37 reacted with fragments of lysed cells but not whole cells. FRBT37 was expressed when V. vulnificus was cultured in different growth media. The minimum level of detection of the EIA was approximately 2,000 V. vulnificus cells per EIA well. Epitope FRBT37 was labile at 70 degrees C for 30 min. Immunoblot and EIA plate formats reduced assay time and facilitated handling large numbers of test samples.  相似文献   

19.
Postharvest processing (PHP) is used to reduce levels of Vibrio vulnificus in oysters, but process validation is labor-intensive and expensive. Therefore, quantitative PCR was evaluated as a rapid confirmation method for most-probable-number enumeration (QPCR-MPN) of V. vulnificus bacteria in PHP oysters. QPCR-MPN showed excellent correlation (R(2) = 0.97) with standard MPN and increased assay sensitivity and efficiency.  相似文献   

20.
Vibrio vulnificus infections are associated with raw oyster consumption, and disease reservoirs are determined by the ability of this bacterium to infect and persist in oysters. Surface structures, such as capsular polysaccharide (CPS), pili and flagella, function as virulence factors in mouse infection models. Furthermore, virulence is related to phase variation in colony morphology, which reflects CPS expression and includes opaque (encapsulated, virulent), translucent (reduced encapsulation, avirulent) and rugose (wrinkled, biofilm-enhanced) colony types. The role of these factors in environmental survival is unknown; therefore, mutational analysis and phase variation of V. vulnificus were examined in an oyster infection model. Oysters ( Crassostrea virginica ) were pre-treated with tetracycline to reduce background bacteria and subsequently inoculated via filter feeding with 106 colony-forming units (cfu) ml−1 of V. vulnificus wild-type strains and phase variants, as well as strains with deletion mutations in genes related to CPS (Δ wza ), pili (Δ pilA ), flagella (Δ flaCDE/ Δ flaFBA ) and motility (Δ motAB ). All mutants were significantly reduced in their dissemination to oyster haemolymph as compared with wild type; however, recovery of mutants from gills and intestinal tissue was generally similar to wild type. Translucent and rugose inocula showed induction of high-frequency phase variation to the opaque encapsulated phenotype (100% and 72% respectively) during oyster infections that did not occur in strains recovered from seawater. Thus, multiple bacterial factors determine uptake of V. vulnificus in oysters, and phase variation during oyster infection is a likely mechanism for environmental survival and for induction of the more virulent phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号