首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anigozanthos manglesii(Haemodoraceae) is a colourful, herbaceousperennial exhibiting intra- and inter-populational variationin germination in response to smoke and heat. This study investigatedthe extent and nature of this variation in A. manglesii populationscollected along a 550 km latitudinal cline from kwongan scrub(30°S) to more mesic jarrah forest habitats (34°S) insouthwestern Australia. Variation in seed germination alonga maturing inflorescence was also investigated. Germinationof this species is known to be prolific following fire, andtwo germination treatments, aerosol smoke and heat, were usedas germination cues. There was a trend of increasing responsivenessof A. manglesii to smoke with increasing latitude along a clinalrange, but there were no differences in germination of seedsalong the cline in response to control or heat treatments. Therewas no significant difference in intra-population seed germinationin response to any treatment. Lastly, a significant and increasingresponse to smoke for seeds from the apex to base of the inflorescencewas detected. This latter trend may be attributed to higherresource allocation and an accelerated after-ripening of basipetalcompared to acropetal seeds. Possible reasons for the clinalvariation are discussed.Copyright 2001 Annals of Botany Company Anigozanthos manglesii, populations, geographical cline, inflorescence level, germination, smoke, heat, fire, seed development  相似文献   

2.
Germination of freshly collected seeds of three sympatric herbaceous species native to fire‐prone environments in south‐western Australia was significantly improved through the application of novel combinations of dry heat, gibberellic acid, smoke water and dry afterripening. For fresh seeds, combinations of dry heat, gibberellic acid and/or smoke water resulted in >80% germination in Austrostipa elegantissima (Poaceae) and Stylidium affine (Stylidaceae) seeds and >60% germination in Conostylis candicans (Haemodoraceae) seeds, compared with <10% germination of control seeds. For fresh seeds, two broad germination patterns were observed in response to smoke water: nil – low germination for both control and smoke water‐treated seeds (A. elegantissima and S. affine); and a significant smoke response (35%) compared with control seeds (1%) (C. candicans). During afterripening, high germination for A. elegantissima seeds was achieved following 3 months storage of seeds at equilibrium relative humidities of 23–75%, but seeds stored at 5–13% equilibrium relative humidities took 6–36 months to achieve similar levels of germination. Germination of C. candicans seeds also increased after 3 months storage, to >60% at each equilibrium relative humidity and further increases over time were slight. For S. affine seeds >60% germination was achieved only after 36 months storage at 50% equilibrium relative humidity. Seeds from all three species were smoke‐responsive at some point, but the interaction/effects of afterripening on the smoke response varied significantly between species. This study highlights an apparent effect of seed dormancy status on response to smoke and a surprisingly high level of ecological variation in pre‐germination requirements (cues) for these co‐occurring species that may relate to variation(s) in microsite selection forces operating on the soil seed bank of the different species.  相似文献   

3.
It has been widely advocated that smoke–water application to topsoil can substantially improve restoration success by enhancing seed germination. This is despite few studies having tested the effects of smoke–water on seedling emergence in field-scale restoration trials. Here we report the effects of applying a commercially available smoke solution (Regen 2000®), at rates between 0 and 100 mL m 2, on jarrah forest sites being restored after bauxite mining in the southwest of Western Australia. Smoke solutions stimulated the seed germination of a range of species in laboratory experiments. In addition, smoke–water stimulated germination of Stylidium affine seeds sown directly into the first field experiment. However, apart from the effect on sown S. affine seeds, smoke–water application had no effect on subsequent seedling numbers, species richness or the relative proportion of seedlings in different growth-form categories in either of the two field experiments. These findings suggest that smoke–water application does not always ensure enhanced restoration outcomes.  相似文献   

4.
Fire ephemerals are short-lived plants with seeds that persist in the soil and germinate after a fire or physical soil disturbance. Ex situ germination of many Australian fire ephemerals has previously been difficult. Dormancy was present in most of the nine fire ephemerals examined. Alyogyne hakeifolia (Giord.) Alef. and Alyogyne huegelii (Endl.) Fryxell (Malvaceae) seeds had physical and possibly also physiological dormancy, Actinotus leucocephalus Benth. (Apiaceae) seeds had morphophysiological dormancy, Austrostipa compressa (R.Br.) S.W.L. Jacobs & J. Everett and Austrostipa macalpinei (Reader) S.W.L. Jacobs & J. Everett (Poaceae) seeds were either non-dormant or possessed physiological dormancy, and seeds of all remaining species possessed physiological dormancy. A proportion of the Alyogyne hakeifolia, Alyogyne huegelii, Austrostipa compressa and Austrostipa macalpinei seed populations were non-dormant because some seeds could germinate at the various incubation temperatures without further treatment. At 20 °C, artificial methods of inducing germination such as manual or acid scarification were among the optimal treatments for Austrostipa compressa, Austrostipa macalpinei, Alyogyne huegelii, Actinotus leucocephalus and Grevillea scapigera A.S. George (Proteaceae), and gibberellic acid induced maximum germination of Tersonia cyathiflora (Fenzl) J.W. Green (Gyrostemonaceae) seeds. Heat (70 °C for 1 h) and smoke water was one of the most effective treatments for germinating Actinotus leucocephalus and Codonocarpus cotinifolius (Desf.) F. Muell. (Gyrostemonaceae) seeds. Germination of Grevillea scapigera, Codonocarpus cotinifolius, Gyrostemon racemiger H. Walter (Gyrostemonaceae) and Tersonia cyathiflora did not exceed 40% and may require other treatments to overcome dormancy. Although the nine fire ephemerals examined require fire to germinate under natural conditions, a range of germination responses and dormancy types was observed.  相似文献   

5.
Seeds of the obligate parasitic plants, Orobanche spp., wereconditioned in water or GA3for 2 or 12 weeks and then stimulatedto germinate by the synthetic stimulant GR24. Temperature treatmentsduring the germination tests comprised 169 different constantand alternating temperature regimes on a two-dimensional gradientplate. Optimum temperatures for germination of seeds of O. aegyptiacaand O. crenata were 18–21 °C and 18 °C, respectively.However, longer conditioning periods slightly lowered the optimain both species, and the maximum germination percentage wasalso reduced due to an induction of secondary dormancy. At agiven mean temperature, more seeds germinated at constant thanat alternating temperatures. Results were analysed in termsof characteristics of alternating temperatures that appearedto control germination, i.e. mean temperature, maximum temperature,amplitude (difference between daily maximum and minimum temperatures)and thermoperiod (the time spent at the maximum temperatureeach day). Final germination was modelled on the basis of therebeing two prerequisites for germination: a minimum mean temperaturewhich must be exceeded and a maximum temperature above whichthe seed will not germinate. These two requirements were assumedto be independent and to be normally distributed in the seedpopulation so that final germination could be described by amultiplicative probability model. Because of the response tomaximum temperature, inhibitory effects were more evident atalternating temperatures. Amplitude and thermoperiod influencedthis effect of maximum temperature. The implications of thedetrimental effect of alternating temperatures for germinationofOrobanche spp. in the field are discussed. Copyright 1999Annals of Botany Company Orobanche aegyptiaca, O. crenata, O. cernua, O. minor, broomrape, seed germination, temperature, germination model, secondary dormancy.  相似文献   

6.
Effects of dehydration, storage temperature and humidificationon germination of Salix alba andS. matsudana seeds were studied.Newly released seeds showed 100% germination before and afterdehydration to 11–12% moisture content. Germination ofthe high vigour lot (100% initial normal germination) was notaffected by dehydration to 6.7% moisture content but germinationdecreased with further dehydration to 4.3%. The lower vigourlot (75% initial normal germination) was more susceptible todehydration and germination decreased following dehydrationto 6.7% moisture content. Dry seeds of both species survivedimmersion in liquid nitrogen without loss of viability. Thegermination of seeds stored with 9% moisture content decreasedto 35–40% in 5 months at -20°C or in 2 months at 5°C.However, at 25°C seeds entirely lost viability within 2weeks. Seeds showed improved performance when stored at -70°C> - 20°C > 5°C > 25°C and tolerated dehydrationto a moisture content in equilibrium with 15% relative humidity.Results suggest that they are orthodox in storage behaviouralthough they are short-lived. Humidification treatment of lowvigour seed lots resulted in a remarkable increase in germinationpercentage. Copyright 2000 Annals of Botany Company Salix alba, Salix matsudana, willow, seed storage behaviour, dehydration, humidification, cryopreservation  相似文献   

7.
Abstract This paper describes an assessment of the effect of exposure to fire‐related cues (heat shock, smoke and nitrate) and the interactions between the cues on seed dormancy release of tropical savanna legumes in north‐eastern Australia. Ten legume species were tested, comprising both native and exotic species. The ten species responded variously to the treatments. Brief exposure to temperatures between 80 and 100°C was found to break the seed dormancy of the native ephemeral herbs Chamaecrista mimosoides, Crotalaria calycina, Crotalaria montana, Indigofera hirsuta and Tephrosia juncea, as well as the exotic ephemeral herb Crotalaria lanceolata. Exposure to 80°C combined with treatment with a nitrate solution produced an additive effect on the germination of Chamaecrista mimosoides and Crotalaria lanceolata. However, the four species with the heaviest seeds, two exotic ephemeral herbs (Chamaecrista absus and Crotalaria pallida) and two native perennials (Galactia tenuiflora and Glycine tomentella) displayed no significant increase in germination with exposure to fire‐related cues. Exposure to 120°C for 5 min produced seed mortality in all species tested. Two of the largest seeded species, Crotalaria pallida and Galactia tenuiflora, displayed the lowest tolerance to heat shock, with seed mortality after exposure to 100°C for 5 min. These data indicate that fire can promote the germination of some tropical savanna legumes. As a proportion of seeds of each species displayed no innate dormancy, some germination may occur in the absence of fire, especially of exotic species.  相似文献   

8.
Seed Coat Dormancy in Two Species of Grevillea(Proteaceae)   总被引:3,自引:0,他引:3  
The role played by the seed coat in seed dormancy of Grevillealinearifolia(Cav.) Druce and G. wilsonii(A. Cunn.) was testedby a series of manipulations in which the seed coat was dissectedand removed, dissected and returned to the decoated seed, ordissected, removed and given a heat shock, and returned to thedecoated seed. Germination of intact seeds of both species wasalso examined after exposure to heat shock, smoke, or heat shockand smoke combined. Water permeability of the seed coat wasinvestigated by examining imbibition. For intact seeds, virtuallyno germination occurred under any treatment (G. wilsonii), orgermination was increased by exposure to either heat or smoke(G. linearifolia). Removal of the seed coat led to germinationof all decoated seeds for G. linearifolia, or a proportion ofdecoated seeds for G. wilsonii. Inclusion of smoked water inthe incubation medium led to a higher proportion of decoatedseeds germinating for G. wilsonii. Returning the seed coat,either with or without heat shock to the seed coat, did notsignificantly affect germination in either species. Seed coatswere permeable to water in both species. For the two Grevilleaspecies, there were different dormancy mechanisms that werecontrolled by the seed coat (G. linearifolia) or by both theseed coat and embryo (G. wilsonii). Copyright 2000 Annals ofBotany Company Grevillea linearifolia, Grevillea wilsonii, dormancy, seed coat dormancy, seed coat permeability, smoke, heat shock, germination  相似文献   

9.
Ellis, R. H., Simon, G. and Covell, S. 1987. The influence oftemperature on seed germination rate in grain legumes. III.A comparison of five faba bean genotypes at constant temperaturesusing a new screening method.—J. exp. Bot. 38: 1033–1043. A screening procedure which requires information on the progressof germination at only four temperatures was able to definethe response of the rate of seed germination to sub- and supra-optimaltemperatures for whole seed populations of each of five fababean (Vicia faba L.) genotypes. In one population of the cultivarSutton the models for sub- and supra-optimal temperatures derivedfrom the screen satisfactorily explained observations from anearlier separate investigation at a wider range of temperatures.Two discrete groups of genotypes were identified. Within eachgroup the base temperature Tb did not differ significantly:for the landraces Lebanese Local Large and Syrian Local Largethe value was estimated to be –7·5°C and forthe landrace Lebanese Local Small and the cultivars Sutton andAquadulce it was –4·0°C. The optimum temperaturefor the 50th percentile [To(50), at which temperature the rateof germination is maximal] also varied between these two groupsof genotypes, being 20·5–21·5°C forthe first group and 24·5–26·0°C forthe second. In several temperature regimes some of the viableseeds within a seed population failed to germinate. Nevertheless,even at temperatures where a substantial proportion of the seedsfailed to germinate the models defined by the screening methodpredicted the germination times of those seeds which did germinate. Key words: Faba bean, seed gemination rate, temperature  相似文献   

10.
Seed germination in Talinum triangulare as affected by photoperiod,with or without previous incubation in the dark in water at25 or 4 °C, was studied. The time course and quantity ofseed germination in photoperiods of 1 h and above were similarwith or without dark pretreatment, but the time to half maximumgermination was reduced from 12 days in non-dark pretreatedseeds to 4 days in seeds given 20 days in the dark at 25°C.A photoperiod of 0·25 h gave a lower rate and total germinationthan photoperiods of 1 h and above. Un-pretreated seeds required17 cycles of 24 h photoperiod for maximum germination as comparedwith 7 or less cycles if the seeds received more than 10 daysdark pretreatment at 25 °C. Both the rate and total germinationin light increased as the length of dark pretreatment at 25°C was increased from zero to 30 days. Incubation of theseeds in water in the dark at 4 °C for 5 to 30 days priorto illumination at 21 °C, reduced both the rate and quantityof seed germination in light as compared with those similarlyincubated in the dark at 25 °C. However, previous incubationin the dark for 30 days at 4 °C partially substituted forthe light requirement. The possible mechanism of breakage ofseed dormancy in Talinumis discussed in relation to these andother findings. Talinum triangulare (Jacq.), Willd, light, photoperiod, seed germination  相似文献   

11.
Seed growth characteristics of Aesculus hippocastanum were examinedin detail during development from about 70 to 140 d after anthesis(DAA), mainly in 1988 and 1989. Mean fresh and dry weights increasedfor both the axis and the whole seed up to the time of peakseed fall at 135 DAA with no cessation before fruit abscission.Water per seed increased up to 100 DAA, after which no furtherincrease occurred; moisture content declined for the embryonicaxis and whole seed respectively from above 75 and 65% at 95DAA to 65 and 50% at 130 DAA. At fruit shedding in 1990 waterpotential values of -1·2, -2·6 and -1·1MPa were observed for the testa, cotyledon and axis tissuesrespectively; relevant sorption isotherms are presented. Decreases in seed moisture content during development were accompaniedby increases in desiccation tolerance and in germinability,both reaching their maximum at the time of peak seed fall. Atmaturity, only about 10% viability was retained on drying seedto 20% moisture content; it is confirmed that the seeds are'recalcitrant'. The exact relationship between moisture contentand germination during development was dependent on the deptof dormancy, as judged by the period of chilling required; eachduration of chilling at 2°C within the range 3-12 weeksyields a curve of sigmoid shape. No germination occurred at26°C without chilling, but nearly full germination can beobserved for samples collected at 6 weeks before maximum seedfall with 12 weeks chilling. The rate of moisture loss duringdesiccation at 15°C and 15% rh becomes reduced during development.The ontogeny of these 'recalcitrant' seeds is compared withthat of 'orthodox' seeded species and the implication of sigmoid-shapedcurves for the relationship between seed moisture content andgermination are considered.Copyright 1993, 1999 Academic Press Aesculus hippocastanum L., horse chestnut, seed development, water status, germination, desiccation intolerance, desiccation rate  相似文献   

12.
Thermal analyses of freezing events in hydrated lettuce (LactucasativaL.) seeds show a correlation between low temperature exotherms(LTEs) (evidence of ice crystal formation) and seed death. Yet,weather patterns common to the Northern Great Plains of NorthAmerica regularly create conditions where non-dormant seedsof native plants hydrate with snow melt and are subsequentlyexposed to -30 °C or colder conditions. To determine ifsuch weather patterns decimate dispersed seeds, we measuredthe effects of freezing on fully hydrated winterfat (Eurotialanata(Pursh) Moq.) seeds harvested from the Northern Plainsat two USA and one Canadian location. Survival of hydrated seedsto -30 °C at a cooling rate of 2.5 °C h-1was similarto that of seeds not subjected to cooling, even though botha high temperature exotherm (HTE) and an LTE were observed.Although the LTE was not related to winterfat seed survival,freeze-stressed seeds had reduced germination rates and reducedseedling vigour, particularly for the collection with the lightestseeds. The temperature of LTEs was similar among seed collectionswith a mean of -17.6 °C, but was warmer when the seeds wereimbibed at 0 °C compared to 5, 10 or 20 °C. We founda significant correlation between the HTE and LTE temperatures.The difference and the correlation may be due to the highermoisture content of seeds imbibed at 0 °C. After pericarpremoval, only one exotherm in the range of the LTE was observed.This was also true for the naked embryo. We conclude that anLTE indicates ice formation in the embryo, but that it doesnot signal the death of a winterfat seed.Copyright 1998 Annalsof Botany Company Eurotia lanata(Pursh) Moq.,Krascheninnikovia, Ceratoides,winterfat, exotherm, freezing tolerance, freezing avoidance, seedbed ecology, germination, D50, seedling vigour, seed collection  相似文献   

13.
O. Reyes  L. Trabaud 《Plant Ecology》2009,202(1):113-121
Fire is an ecological factor that has been present in the ecosystems of the Mediterranean region for thousands of years. Our study was undertaken to acquire knowledge of the effect of fire on the germination of Mediterranean species. We used high temperatures (up to 60°C) and smoke to determine the effect of these factors on the germination of species from the Mediterranean region. The species selected are characteristic of the central Mediterranean basin and are representative of both woody and herbaceous species: Rhamnus alaternus L., Cistus albidus L., Cistus monspeliensis L., Fumana ericoides (Cav.) Gand., Rosmarinus officinalis L., Melica ciliata L., Avena sterilis L., Bituminaria bituminosa (L.) C.H. Stirt., Anthyllis vulneraria L., Coronilla glauca L., Argyrolobium zanonii (Turra) P.W. Balland, Emerus major Mill., Genista scorpius (L.) D.C. and Spartium junceum L. The seeds were collected in Mediterranean shrubland (8) and woodland (6) ecosystems, around Montpellier, France (24°45′N and 3°50′E). Ten treatments were tested: a control, three smoke treatments and six heat treatments. The average germination level (germination percentage) and the average T50 rates (time taken to reach 50% of germination) were calculated. The smoke and heat act in a different way on each of the species. The smoke enhanced the germination of two species, whilst moderate heat increased germination in all of the species excepting R. officinalis, F. ericoides, A. sterilis, A. vulneraria, and G. scorpius. Germination was fastest in M. ciliata and S. junceum and slowest in A. sterilis, E. major and C. albidus. The cues did not significantly affect the rate of germination. Fire modified the germination response of 12 of the 14 species studied.  相似文献   

14.
Cyclamen persicum Mill, seeds germinate in a narrow range oftemperature and germination is strongly inhibited by continuousirradiation with white light. The thermal optimum is approx.15 °C in both darkness and light. Seed germination is alsovery sensitive to oxygen deprivation and this sensitivity ismore pronounced at 20 °C than at the optimum 15 °C.Very immature seeds cannot germinate at any temperature, butgerminability increases during seed maturation Seedling development is unusual since seed reserves are usedimmediately for tuber formation. Tuberization is optimal at15–20 °C in light and in darkness. Supra-optimal temperatures(25–30 °C) or hypoxia inhibit tuber formation andlead to very elongated tubers These results allow the producers to improve the productionof homogeneous populations of cyclamen seedlings Wheat seeds, Triticum aestwum L., acetylcholinesterase, electrophoresis, germination, assay  相似文献   

15.
Invasive alien plants impact ecosystems, which often necessitates their removal. Where indigenous species recovery fails following removal alone, an active intervention involving reintroduction of seed of native species may be needed. This study investigated the potential for a combination of the fire cues of smoke and heat as a pre‐treatment of seeds in breaking dormancy and facilitating increased germination. Species were selected to represent different functional types within Cape Flats Sand Fynbos; a fire‐prone, critically endangered vegetation type in South Africa. Seeds were exposed to either a heat pulse (temperatures between 60 and 300°C for durations of between 30 s and 20 min) or dry after‐ripening (1 or 2 months at milder temperatures of 45°C or less). Thereafter, seeds were soaked in smoke solution for 18 h and subsequently placed on agar at 10/20°C for germination. Most species fell into one of two main groups: Seed germination in the first group was greatest following a lower temperature (60°C) heat pulse, an extended period of mild temperature (20/40°C or 45°C) exposure, or no pre‐treatment with heat. Seed germination in the second group was promoted after brief exposure to higher (100°C) temperatures. No germination occurred in any species following heat treatments of 150°C or higher. Species which responded better to higher temperatures were mainly those possessing physical dormancy, but seed morphology did not correlate with germination success. This study showed that heat stimulation of seeds is more widespread in fynbos plant families than previously known and will enable the development of better seed pre‐treatment protocols before large‐scale sowing as an active restoration treatment after alien plant clearing.  相似文献   

16.
The effects of smoke, heat, darkness and cold stratification on seed germination were examined for 40 species with various life history attributes. These species establish in early successional stages on a volcano and are distributed in cool temperate zones of northern Japan. Smoke decreased seed germination in 11 species and increased it in one species, Leucothoe grayana . Germination of Polygonum longisetum was enhanced by a combination of smoke and cold, and that of Aralia elata by smoke and heat. Heat increased germination for three species and decreased it for one. Cold stratification broke dormancy in seeds of 11 species. Continuous darkness decreased germination of 22 species and did not increase germination for any species, showing that approximately half of the species require light for maximum germination. Although most species are sun plants that establish in early stages of succession and/or in disturbed areas, smoke and heat do not enhance germination of these species after disturbance, even when the disturbance is fire. Germination of slender and/or large seeds tends to be decreased more by smoke, probably because of their larger surface area. Light is more important than smoke and heat for detection of disturbance and for seed germination in this region. However, despite the low fire frequency in the region, germination of a few species was increased by fire-derived stimuli.  相似文献   

17.
Photoinhibition of Seed Germination in Mediterranean Maritime Plants   总被引:4,自引:1,他引:3  
Photoinhibition of seed germination was shown for Allium staticiforme,Brassica tournefortii, Cakile maritima and Otanthus maritimus,all plant species inhabiting sandy coasts of the MediterraneanSea. Germination of A. staticiforme was found to be typicallyMediterranean in regard to its temperature range (>0–20°C), while B. tournefortii germinated optimally at intermediatetemperatures (15–25 °C). Light sensitivity was morepronounced in the latter species and 50 % inhibition of seedgermination was obtained with photon flux densities of approximately0.1 and 0.015 mol m–2 d–1 in A. staticiforme andB. tournefortii, respectively. However, the slopes of the regressionlines of germination plotted against the logarithm of whitelight flux density are similar in both species. From monthlyexperiments performed under fluctuating conditions of temperatureand light, simulating the elimate of Athens throughout the year,optimal germination response peaked in ‘winter’conditions for A. staticiforme, while a bimodal pattern wasobserved for B. tournefortii (maxima at the warm ends of therainy season). In contrast to the other plants, a fifth speciestested, Crithmum maritimum, showed an absolute light requirement,probably related to the rocky habitats of the species; the optimumgermination period coincided with the rainy season. Pot experimentswith seeds of the five species buried at various depths confirmedthat maximum emergence is favoured by shallow depths (0.5–1cm). It is concluded that seed germination in maritime plantsof the Mediterranean rim is mediated by a photoinhibition mechanismwhich can be considered an adaptation strategy against surfaceseedling establishment at the harsh, sandy or shingle, sea coasthabitats. Allium staticiforme, Brassica tournefortii, Cakile maritima, sea rocket, Crithmum maritimum, rock samphire, Otanthus maritimus, ton-weed, seed germination, light, photoinhibition, phytochrome, seedling emergence  相似文献   

18.
The emergence of celery (Apium graveolens L. cv. Utah 52–70)seeds was promoted by growth regulators when exposed to hightemperatures during the germination period. The growth regulatorswere applied to dry seeds prior to sowing, by means of the organicsolvent dichloromethane (DCM). A mixture of gibberellins A4and A7 (GA4/7) strongly enhanced emergence at a high day-timetemperature of 35°C alternating with night temperaturesof 20°C and 25°C; however, emergence was very poor whenthe night temperature was raised to 30°C. Under the latterregime, only mixtures of GA4/7 with 6-benzylaminopurine (BA)or with 2-chlorophosphonic acid (ethephon) promoted seed emergence.However, BA and ethephon applied separately or in combinationwere much less effective in enhancing seed emergence withoutthe addition of GA4/7, under all the temperature regimes.  相似文献   

19.
Vegetative resprouting, soil or canopy-stored seed banks, post-fire seed dispersal and germination are the major strategies by which plants regenerate after fires. Post-fire regeneration modes of plants are commonly based on the presence or absence of post-fire recruitment as well as the presence or absence of post-fire resprouting. High temperatures, smoke and ash are characteristics of fire and the post-fire environment. We hypothesized that heat, smoke, ash and pH will have differential effects on seed germination depending on species’ post-fire regeneration strategies: serotinous vs. nonserotinous (which may have soil seed banks) and resprouters vs. nonresprouters (which may be obligate seeders). Here we examined the effects of these factors on the germination of 27 common east Australian species. Most serotinous species supported our hypothesis by showing no effect or reduced germination in response to heat. However, contrary to our prediction, all nonserotinous nonresprouting species also showed no effect or reduced germination in response to heat. Smoke, contrary to our hypothesis, had a negative or no effect on all serotinous and nonresprouting species, but no clear directional effect on serotinous and resprouting species. Supporting our hypotheses, ash and high pH showed positive or nonsignificant effects on the germination of all serotinous resprouting species, and a negative or no effect on nonserotinous resprouting species. However, contrary to our prediction, it had a negative or no effect on the serotinous nonresprouting species and no clear effect on nonserotinous nonresprouting species. We also discovered large differences in germination responses between conspecific populations that varied in their degree of resprouting. Although our data confirmed several of our predictions, the overall conclusion is that the responses of seeds to heat, smoke, ash and pH are not tightly associated with post-fire regeneration functional types. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The rapid and uniform establishment of soya bean [Glycine max(L.) Merr.] stands is conducive to higher yields. This studywas undertaken to determine the effects of cultivar, temperature,and seed size on the rate of germination and emergence. No cultivar effect on the germination rate was observed. However,in an emergence study from a sand-soil-peat mixture, cultivardifferences in emergence rates were noted(‘Chippewa 64’> ‘Wayne’ > ‘Amsoy 71’). In anotheremergence study (sand media) the cvs ‘Calland’ and‘Williams’ emerged faster than the cv. 'Wayne or‘Wells’. Time required for 50 per cent germination decreased (18.8–4.0days) as the temperature increased from 10 to 30 °C (5 °Cincrements). Emergence (50 per cent) from a sand-soil-peat mixturewas more rapid (19.8–6.3 days) as the simulated plantingdate (growth chamber set to simulate field temperatures) wasdelayed from 16 April to 15 June with an intermediate date of16 May. In addition, time required for 50 per cent emergence of thecultivars from sand decreased (793–76 h) as the temperaturewas increased from 10 to 30 °C with no decrease from 30to 35 °C. Seed size effects were apparent, with the very small seed germinatingslower than the three larger seed sizes. In the emergence studieswith both the sand and sand-soil-peat mixture there was a generaltrend toward more rapid emergence with the smaller seeds. However,the absolute differences were small. Significant cultivar x temperature interactions were observedfor the germination and emergence rates. In most cases the cultivarsmerged in terms of germination and emergence rates at temperaturesbetween 10 and 20 °C and at the higher temperatures thecultivar rankings were different from those observed at temperaturesbelow the merging point. Glycine max (L.) Merr, soya bean, seed germination, establishment of seedlings  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号