首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Green's function approach is used in constructing a dynamic model of a semi-infinite length of the DNA homopolymer B poly(d) . poly(d). Considerable attention is focused on the hydrogen bond stretching close to the terminus. A melting (or breathing) coordinate (M) is defined as an average over the three linking hydrogen bond stretches in a unit cell. The thermal mean squared amplitude of (M) is enhanced at the chain end compared with the interior. Spectral branches at 69, 80 and 105 cm-1, as well as a local mode at 75 cm-1, are primary contributors to the enhancement. We suggest that this fact can affect the thermal melting of a DNA double helical homopolymer, enhancing the tendency to start from an end (if one is available). We show how certain infinite chain modes with small (M) amplitude can turn into breathing modes near the terminus, and suggest that the same phenomenon may occur near other specific base-pair sequences. There is also considerable attention paid to the low microwave region from approximately 0 to 1.75 cm-1. The thermally activated modes in this frequency region contribute approximately (0.02 A)2 to [M2(0)] at 40 K, approximately two orders of magnitude greater than for [M2(infinity)]. Most important however, is the existence of narrow resonant modes in this frequency region. Particularly pronounced resonances near 0.03 cm-1 and 0.08 cm-1 (approximately 0.9 and 2.4 GHz) amplify M2(0) at the terminus by about for orders of magnitude over the infinite chain value M2(infinity).  相似文献   

2.
We present an ab initio molecular dynamics study of the roles of fluctuating hydrogen bonds and free ND modes in the dynamics of ND stretch frequency fluctuations in deuterated liquid ammonia. We have also looked at some of the other dynamical quantities such as diffusion and orientational relaxation and also structural quantities such as pair correlations and hydrogen bonding properties which are relevant in the current context. The time correlation function of ND stretch frequencies is found to decay with primarily two time scales: A short-time decay with a time scale of less than 100 fs arising from intermolecular motion of intact hydrogen bonds and also from fast hydrogen bond breaking and a longer time scale of about 500 fs which can be assigned to the lifetime of free ND modes. Unlike water, in liquid ammonia an ND mode is found to remain free for a longer period than it stays hydrogen bonded and this longer lifetime of free ND modes determines the long-time behaviour of frequency fluctuations. Our hole dynamics calculations produced results of vibrational spectral diffusion that are similar to the decay of frequency time correlation. Inclusion of dispersion corrections is found to make the dynamics slightly faster.  相似文献   

3.
The Green's function technique is applied to a study of breathing modes in a DNA double helix which contains a region of different base pairs from the rest of the double helix. The calculation is performed on an alternating poly(dC-dG).poly(dC-dG) helix in the B conformation with four consecutive base pairs replaced by a model of a biological promoter region with four alternating T-A,A-T base pairs, henceforth referred to as (TATA)2. The average stretch of interbase hydrogen bonds is found to be amplified around the insert. This is likely related to the (TATA)2 insert having a lower stability against hydrogen bond melting than the two semi-infinite poly(dC-dG).poly(dC-dG) helices. The insert region may be considered to be a site of enhanced tendency to melt in such a helix. The results show that an alternating AT insert of four base pairs has a larger average hydrogen bond stretch inside and outside the insert region than the average hydrogen bond stretch inside and outside an insert of four consecutive A-T base pairs, henceforth referred to as (AAAA).(TTTT). Calculations are performed which show that the enhancement of the average hydrogen bond stretch around an alternating TA type insert is greatly dependent upon the local modes and not the inband modes. The amount of local mode enhanced average stretch is explored as a function of insert size.  相似文献   

4.
5.
A gas sampling device is described for continuous monitoring of respiratory gas composition that is applicable to experimental conditions when the breathing frequency is very high (greater than 2 Hz) and the response time of conventional gas analyzers becomes a critical limiting factor. The system utilizes the principle of discontinuous gas collection at any selected point of the respiratory cycle facilitated by ultraspeed piezoelectric valves and includes provision for sample-hold characteristics. Two distinct modes of operation are supported. In phase-locked mode gas sampling is synchronous with breathing frequency. In scanning mode gas collection is asynchronous with breathing frequency. Phase-locked mode may be used for continuous monitoring of end-tidal gas concentrations, whereas scanning mode is intended for assessing the gas concentration profile throughout the respiratory cycle. The system may be applied to steady breathing encountered in mechanical ventilation at high frequency or during quasi-steady breathing observed in panting animals. Combined with a respiratory mass spectrometer, the system has been used for measurement of gas concentrations in alveolar gas mixtures at breathing frequencies ranging from 3 to 30 Hz that were otherwise not amenable to rapid measuring techniques.  相似文献   

6.
To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.  相似文献   

7.
The complete crystal structure (including hydrogen) of dihydrate β-chitin, a homopolymer of N-acetylglucosamine hydrate, was determined using high-resolution X-ray and neutron fiber diffraction data collected from bathophilous tubeworm Lamellibrachia satsuma. Two water molecules per N-acetylglucosamine residue are clearly localized in the structure and these participate in most of the hydrogen bonds. The conformation of the labile acetamide groups and hydroxymethyl groups are similar to those found in anhydrous β-chitin, but more relaxed. Unexpectedly, the intrachain O3-H...O5 hydrogen bond typically observed for crystalline β,1-4 glycans is absent, providing important insights into its relative importance and its relationship to solvation.  相似文献   

8.
Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface disialogangliosides (GD1A, GD1B and GD3) in aqueous environment. The molecular mechanics calculation reveals that water mediated hydrogen bonding network plays a significant role in the structural stabilization of GD1A, GD1B and GD3. These water mediated hydrogen bonds not only exist between neighboring residues but also exist between residues that are separated by 2 to 3 residues in between. The conformational energy difference between different conformational states of gangliosides correlates very well with the number of water mediated and direct hydrogen bonds. The spatial flexibility of NeuNAc of gangliosides at the binding site of cholera toxin is worked out. The NeuNAc has a limited allowed eulerian space at the binding site of Cholera Toxin (2.4%). The molecular modeling, molecular mechanics and molecular dynamics of disialoganglioside-cholera toxin complex reveal that cholera toxin can accommodate the disialoganglioside GD1A in three different modes. A single mode of binding is permissible for GD1B and GD3. Direct and water mediated hydrogen bonding interactions stabilizes these binding modes and play an essential role in defining the order of specificity for different disialogangliosides towards cholera toxin. This study not only provides models for the disialoganglioside-cholera toxin complexes but also identifies the NeuNAc binding site as a site for design of inhibitors that can restrict the pathogenic activity of cholera toxin.  相似文献   

9.
Experiments were done to study the dynamic structural motions that determine protein hydrogen exchange (HX) behavior. The replacement of a solvent-exposed lysine residue with glycine (Lys8Gly) in a helix of recombinant cytochrome c does not perturb the native structure, but it entropically potentiates main-chain flexibility and thus can promote local distortional motions and large-scale unfolding. The mutation accelerates amide hydrogen exchange of the mutated residue by about 50-fold, neighboring residues in the same helix by less, and residues elsewhere in the protein not at all, except for Leu98, which registers the change in global stability. The pattern of HX changes shows that the coupled structural distortions that dominate exchange can be several residues in extent, but they expose to exchange only one amide NH at a time. This "local fluctuation" mode of hydrogen exchange may be generally recognized by disparate near-neighbor rates and a low dependence on destabilants (denaturant, temperature, pressure). In contrast, concerted unfolding reactions expose multiple neighboring amide NHs with very similar computed protection factors, and they show marked destabilant sensitivity. In both modes, ionic hydrogen exchange catalysts attack from the bulk solvent without diffusing through the protein matrix.  相似文献   

10.
Calculations of the normal mode spectrum of a netropsin-DNA complex, an isolated DNA helix of the same sequence, and a free netropsin molecule were carried out and compared with observations. We find that the frequency of modes of the complex that are primarily vibrations localized to the helix are relatively unchanged from the frequencies found for similar modes of the isolated helix. On the other hand, the frequencies of those modes of the complex that are found to be primarily in the netropsin are found to change significantly in the complex from that of the free netropsin. Further analysis indicates that the changes in the “netropsin modes” are primarily due to the conformational deformation induced in the netropsin by formation of the complex. All the frequencies and shifts in frequency are in good agreement with recent Raman measurements. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
We carry out temperature-dependent lattice dynamics calculations to determine the vibrational normal modes associated with the interbase H-bond breathing motion in several B-DNA copolymers at temperatures from room temperature to the melting temperatures. We take into consideration Raman selection rules and incorporate a simple empirical model of Raman susceptibility in the interbase H bonds in our calculation and compare them to Raman measurements. Our calculations are carried out using empirical force constants that are not further refined to low-frequency spectra. Our calculations show the existence of strong interbase H-bond breathing modes at frequencies and with relative oscillator strengths close to the observed Raman peaks in the range of 60–140 cm?1 for the DNA sequences considered except for one helix. The correlation between the calculated and observed frequencies and oscillator strengths indicates that the observed Raman peaks in the frequency range are likely interbase H-bond breathing modes. We find that these modes exhibit sizable temperature as well as sequence dependence. We show the softening of these modes on approaching thermal denaturation that is also in agreement with the observed behavior in Raman and melting measurements. The sensitivity of the calculation on the empirical model of Raman susceptibility and the possible reasons for the discrepancy between a few calculated values and observations are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Abstract

Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface disialogangliosides (GD1A, GD1B and GD3) in aqueous environment. The molecular mechanics calculation reveals that water mediated hydrogen bonding network plays a significant role in the structural stabilization of GD1A, GD1B and GD3. These water mediated hydrogen bonds not only exist between neighboring residues but also exist between residues that are separated by 2 to 3 residues in between. The conformational energy difference between different conformational states of gangliosides correlates very well with the number of water mediated and direct hydrogen bonds. The spatial flexibility of NeuNAc of gangliosides at the binding site of cholera toxin is worked out. The NeuNAc has a limited allowed eulerian space at the binding site of Cholera Toxin (2.4%). The molecular modeling, molecular mechanics and molecular dynamics of disialo- ganglioside-cholera toxin complex reveal that cholera toxin can accommodate the disialo- ganglioside GD1A in three different modes. A single mode of binding is permissible for GD1B and GD3. Direct and water mediated hydrogen bonding interactions stabilizes these binding modes and play an essential role in defining the order of specificity for different disialogangliosides towards cholera toxin. This study not only provides models for the disialoganglioside-cholera toxin complexes but also identifies the NeuNAc binding site as a site for design of inhibitors that can restrict the pathogenic activity of cholera toxin.  相似文献   

13.
We combined normal mode analysis (NMA) with cavity calculations as a method to get more insight into static crystal structures. We used nitrile hydratase (NHase) as a case study, and the crystal structure of a complex of Pseudonocardia thermophila NHase (1UGP) with n-butyric acid was chosen as a reference structure. The reference structure was compared with the other available NHase crystal structures. Cavity calculations of the static structures showed the entrances to the active site and also a possible function of the N-terminal in the substrate selection of the Co-type NHase. When NMA was combined with cavity calculations, a closing-opening passage was observed. Analysis of low frequency modes combined with cavity calculations led us to propose "breathing" and "flip-flop" mechanisms which might be a key part of the substrate binding mechanism.  相似文献   

14.
M E Davis  L L Van Zandt 《Biopolymers》1989,28(8):1429-1433
We have calculated the expected absorption of microwave radiation in the gigaHertz frequency range by fixed-length DNA polymer molecules dissolved in saline solution. While the effects of counterions and solvent dynamics have been accounted for in detail, the features of the absorption are completely dominated by the interaction between the charged polymer and the so-called first hydration layer, that is, the nearest layer of solvent water molecules not actually bonded to the polymer. The relevant parameters of the interaction are the strength of the water-to-polymer coupling and the average persistence time of the individual water-to-polymer bonds. These are presumably hydrogen bonds to the oxygen atoms of the backbone phosphate structure. Using a given parameterization we can obtain the structured absorption corresponding to compressional wave phonon excitations on the polymer, "organ pipe" modes, such as have been claimed to be seen by Edwards, Davis, Swicord, and Saffer. While further studies have not confirmed these resonances, at some frequency and hydration these modes must become visible because of the high relaxation time measured by Lindsay, the existence of the resonances in relatively dry fibers and films of DNA, and the existence of underdamped modes in the ir spectrum of DNA in solution. We have examined the effects of varying salt concentration and the system temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Nanda V  Schmiedekamp A 《Proteins》2008,70(2):489-497
Proteins fold and maintain structure through the collective contributions of a large number of weak, noncovalent interactions. The hydrogen bond is one important category of forces that acts on very short distances. As our knowledge of protein structure continues to expand, we are beginning to appreciate the role that weak carbon-donor hydrogen bonds play in structure and function. One property that differentiates hydrogen bonds from other packing forces is propensity for forming a linear donor-hydrogen-acceptor orientation. To ascertain if carbon-donor hydrogen bonds are able to direct acceptor linearity, we surveyed the geometry of interactions specifically involving aromatic sidechain ring carbons in a data set of high resolution protein structures. We found that while donor-acceptor distances for most carbon donor hydrogen bonds were tighter than expected for van der Waals packing, only the carbons of histidine showed a significant bias for linear geometry. By categorizing histidines in the data set into charged and neutral sidechains, we found only the charged subset of histidines participated in linear interactions. B3LYP/6-31G**++ level optimizations of imidazole and indole-water interactions at various fixed angles demonstrates a clear orientation dependence of hydrogen bonding capacity for both charged and neutral sidechains. We suggest that while all aromatic carbons can participate in hydrogen bonding, only charged histidines are able to overcome protein packing forces and enforce linear interactions. The implications for protein modeling and design are discussed.  相似文献   

16.
The Green's function technique is applied to a study of breathing modes in a DNA double helix which contains a region of different base pairs from the rest of the double helix. The calculation is performed on a G-C helix in the B conformation with four consecutive base pairs replaced by A-T. The average stretch in hydrogen bonds is found amplified around the A-T base pair region compared with that of poly(dG)-poly(dC). This is likely related to the A-T regions lower stability against hydrogen bond melting. The A-T region may be considered to be the initiation site for melting in such a helix.  相似文献   

17.
The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reaching high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10?40 to n = 3?20.  相似文献   

18.
H H Liu  S H Lin    N T Yu 《Biophysical journal》1990,57(4):851-856
Resonance Raman spectra are reported for the organometallic phenyl-FeIII complexes of horse heart myoglobin. We observed the resonance enhancement of the ring vibrational modes of the bound phenyl group. They were identified at 642, 996, 1,009, and 1,048 cm-1, which shift to 619, 961, 972, and 1,030 cm-1, respectively, upon phenyl 13C substitution. The lines at 642 and 996 cm-1 are assigned, respectively, as in-plane phenyl ring deformation mode (derived from benzene vibration No. 6a at 606 cm-1) and out-of-plane CH deformation (derived from benzene vibration No. 5 at 995 cm-1). The frequencies of the ring "breathing" modes at 1,009 and 1,048 cm-1 are higher than the corresponding ones in phenylalanine (at 1,004 and 1,033 cm-1) and benzene (at 992 and 1,010 cm-1), indicating that the ring C--C bonds are strengthened (or shortened) when coordinated to the heme iron. The excitation profiles of these phenyl ring modes and a porphyrin ring vibrational mode at 674 cm-1 exhibit peaks near its Soret absorption maximum at 431 nm. This appears to indicate that these phenyl ring modes may be enhanced via resonance with the Soret pi-pi transition. The FeIII--C bond stretching vibration has not been detected with excitation wavelengths in the 406.7-457.9-nm region.  相似文献   

19.
Chitosan, a cationic biopolymer derived from chitin, has been described as having antibacterial activity. The modes of this activity, however, have not been established. One mode proposed is that chitosan perturbs bacterial cell membranes. To validate this proposal, in this study we investigated chitosan interactions with lipids in Langmuir monolayers as model membranes. The interactions were assessed by monitoring differences in the shape of the compression isotherms measured in the absence and presence of chitosan in the subphase (acetate buffer). To appraise the contribution of electrostatic interactions versus hydrogen bonding and hydrophobic interactions, three membrane lipids differing in charge were studied-anionic dipalmitoylphosphatidylglycerol (DPPG), zwitterionic dipalmitoylphosphatidylcholine (DPPC), and neutral cholesterol-and the pH of the subphase was varied between 3.5 and 6.0. In addition, the impact of the molecular weight of chitosan on the interactions was assessed at pH 3.5. It was found that while chitosan had a negligible effect on DPPC monolayers over the pH range studied, it distinctly affected DPPG and cholesterol monolayers. The effect on DPPG was found to decrease with increasing pH, that at pH 3.5 being ascribed to the charge-mediating action of chitosan on the local ionic environment and that at higher pHs to the intercalation of chitosan to the monolayers. Practically independent of pH, the effect of chitosan on cholesterol was accounted for by the formation of cholesterol-chitosan hydrogen bonds. Chitosan of lower molecular weight facilitated the interactions with all the three lipids studied. The results obtained may be helpful in identifying the mode of antibacterial activity of chitosan versus other modes that involve the disturbance of cell life cycles.  相似文献   

20.
Cinchona alkaloids are very well known antimalarials but the mechanism of their biological action still remains to be elucidated. The structural studies of active erythro and inactive threo alkaloid complexes are an important step to this aim. In this paper results of crystal structure analysis of three cobalt complexes of threo alkaloids are presented: (epiquininium)trichlorocobalt(II) (EpiQnCoCl3), (epiquinidinium)trichlorocobalt(II) (EpiQdCoCl3) and (epidihydrocinchoninium)trichlorocobalt(II) (EpiCnCoCl3). The complexes are zwitterions in which trichlorocobalt substituents are coordinated to quinoline nitrogen atoms and quinuclidine nitrogen atoms are protonated. EpiQnCoCl3 adopts uncommon conformation with quinoline moiety oriented in the opposite direction in comparison to the analogous uncomplexed alkaloid. The packing in the crystal structures is determined mainly by the hydrogen bonds, in which the chlorine atoms of substituents and solvent molecules contribute. Atoms participating in hydrogen bonds in EpiQnCoCl3 and EpiQdCoCl3 form large rings, while in EpiCnCoCl3 only chains are present. Solvent molecules are very important for the packing mode. In contrast to most erythro alkaloids, the hydroxyl oxygen atom in the title complexes forms weak or not well defined hydrogen bonds. The contribution of very weak intramolecular interactions N1--H1...O12 cannot be excluded. Such "trace" interactions can be considered a relic of the unprotonated status of an epi alkaloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号