首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By virtue of their large number, widespread distribution and important roles in cell physiology and biochemistry, G-protein-coupled receptors (GPCR) play multiple important roles in clinical medicine. Here, we focus on 3 areas that subsume much of the recent work in this aspect of GPCR biology: (1) monogenic diseases of GPCR; (2) genetic variants of GPCR; and (3) clinically useful pharmacological agonists and antagonists of GPCR. Diseases involving mutations of GPCR are rare, occurring in < 1/1000 people, but disorders in which antibodies are directed against GPCR are more common. Genetic variants, especially single nucleotide polymorphisms (SNPs), show substantial heterogeneity in frequency among different GPCRs but have not been evaluated for some GPCR. Many therapeutic agonists and antagonists target GPCR and show inter-subject variability in terms of efficacy and toxicity. For most of those agents, it remains an open question whether genetic variation in primary sequence of the GPCR is an important contributor to such inter-subject variability, although this is an active area of investigation.  相似文献   

2.
Kuliopulos A  Covic L 《Life sciences》2003,74(2-3):255-262
Transmembrane signaling through G-protein coupled receptors (GPCRs) controls a remarkably diverse array of cellular processes including metabolism, growth, motility, adhesion, neuronal signaling, and blood coagulation. The large number of GPCRs and their important roles in normal physiology and in disease have made them the target for more than 50% of prescribed drugs. GPCR agonists and antagonists invariably act on the extracellular surface of the receptors, whereas the intracellular surface has not yet been exploited for development of new therapeutic agents. Here, we demonstrate the utility of novel cell-penetrating peptides, termed pepducins, that act as intracellular inhibitors and/or agonists of signal transference from receptor to G protein. The pepducins require the presence of their cognate receptor for activity and are highly selective for receptor type. Mutational analysis of both intact receptor and pepducins demonstrates that the cell-penetrating agonists do not activate G proteins by the same mechanism as the intact receptor i3 loop, but instead require the C-tail of the receptor. Attachment of a palmitate lipid to shorter i3 loop peptides derived from protease-activated receptors PAR1 and PAR4 created potent inhibitors of thrombin-mediated aggregation of human platelets. Infusion of the anti-PAR4 pepducin into mice extended bleeding time and protected against systemic platelet activation, consistent with the phenotype of a mouse with genetic deficiency of PAR4. These data show that pepducins may be used to ascertain the physiological roles of GPCRs and rapidly determine the potential therapeutic value of blockade of a particular signaling pathway.  相似文献   

3.
Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.  相似文献   

4.
Schneider M  Wolf S  Schlitter J  Gerwert K 《FEBS letters》2011,585(22):3587-3592
Most of the currently available G protein-coupled receptor (GPCR) crystal structures represent an inactive receptor state, which has been considered to be suitable only for the discovery of antagonists and inverse agonists in structure-based computational ligand screening. Using the β(2)-adrenergic receptor (B2AR) as a model system, we show that a dynamic homology model based on an "active" opsin structure without further incorporation of experimental data performs better than the crystal structure of the inactive B2AR in finding agonists over antagonists/inverse agonists. Such "active-like state" dynamic homology models can therefore be used to selectively identify GPCR agonists in in silico ligand libraries.  相似文献   

5.
Both relaxin-3 and its receptor (GPCR135) are expressed predominantly in brain regions known to play important roles in processing sensory signals. Recent studies have shown that relaxin-3 is involved in the regulation of stress and feeding behaviors. The mechanisms underlying the involvement of relaxin-3/GPCR135 in the regulation of stress, feeding, and other potential functions remain to be studied. Because relaxin-3 also activates the relaxin receptor (LGR7), which is also expressed in the brain, selective GPCR135 agonists and antagonists are crucial to the study of the physiological functions of relaxin-3 and GPCR135 in vivo. Previously, we reported the creation of a selective GPCR135 agonist (a chimeric relaxin-3/INSL5 peptide designated R3/I5). In this report, we describe the creation of a high affinity antagonist for GPCR135 and GPCR142 over LGR7. This GPCR135 antagonist, R3(BDelta23-27)R/I5, consists of the relaxin-3 B-chain with a replacement of Gly23 to Arg, a truncation at the C terminus (Gly24-Trp27 deleted), and the A-chain of INSL5. In vitro pharmacological studies showed that R3(BDelta23-27)R/I5 binds to human GPCR135 (IC50=0.67 nM) and GPCR142 (IC50=2.29 nM) with high affinity and is a potent functional GPCR135 antagonist (pA2=9.15) but is not a human LGR7 ligand. Furthermore, R3(BDelta23-27)R/I5 had a similar binding profile at the rat GPCR135 receptor (IC50=0.25 nM, pA2=9.6) and lacked affinity for the rat LGR7 receptor. When administered to rats intracerebroventricularly, R3(BDelta23-27)R/I5 blocked food intake induced by the GPCR135 selective agonist R3/I5. Thus, R3(BDelta23-27)R/I5 should prove a useful tool for the further delineation of the functions of the relaxin-3/GPCR135 system.  相似文献   

6.
7.
Discovery of novel agonists and antagonists for G protein-coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations. The authors have developed a new high-throughput homogeneous assay platform for GPCR discovery as an alternative to current assays, which employs detection of phosphorylation of the key signaling molecule p42/44 MAP kinase (ERK 1/2). The authors show that ERK 1/2 is consistently activated in cells stimulated by Gq-coupled GPCRs and provides a new high-throughput platform for screening GPCR drug candidates. The activation of ERK 1/2 in Gq-coupled GPCR systems generates comparable pharmacological data for receptor agonist and antagonist data obtained by other GPCR activation measurement techniques.  相似文献   

8.
G protein-coupled receptors (GPCRs) show some level of basal activity even in the absence of an agonist, a phenomenon referred to as constitutive activity. Such constitutive activity in GPCRs is known to have important pathophysiological roles in human disease. The thromboxane A2 receptor (TP) is a GPCR that promotes thrombosis in response to binding of the prostanoid, thromboxane A2. TP dysfunction is widely implicated in pathophysiological conditions such as bleeding disorders, hypertension and cardiovascular disease. Recently, we reported the characterization of a few constitutively active mutants (CAMs) in TP, including a genetic variant A160T. Using these CAMs as reporters, we now test the inverse agonist properties of known antagonists of TP, SQ 29,548, Ramatroban, L-670596 and Diclofenac, in HEK293T cells. Interestingly, SQ 29,548 reduced the basal activity of both, WT-TP and the CAMs while Ramatroban was able to reduce the basal activity of only the CAMs. Diclofenac and L-670596 showed no statistically significant reduction in basal activity of WT-TP or CAMs. To investigate the role of these compounds on human platelet function, we tested their effects on human megakaryocyte based system for platelet activation. Both SQ 29,548 and Ramatroban reduced the platelet hyperactivity of the A160T genetic variant. Taken together, our results suggest that SQ 29,548 and Ramatroban are inverse agonists for TP, whereas, L-670596 and Diclofenac are neutral antagonists. Our findings have important therapeutic applications in the treatment of TP mediated pathophysiological conditions.  相似文献   

9.
Steroid sulphatase is a key enzyme in the biosynthesis of bioactive estrogens and androgens from highly abundant inactive circulating sulphated steroid precursors. Little is known about how the expression/activity of this enzyme is regulated. In this article, we show that of 1alpha,25(OH)2D3 stimulates an increase steroid sulphatase activity in the HL60 myeloid leukaemic cell line that is inhibited by a specific nuclear VDR (VDRnuc) antagonist and unaffected by plasma membrane-associated vitamin D receptor (VDRmem) agonists and antagonists. 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells was augmented by RXR agonists, blocked by RXR-specific antagonists, and RAR specific agonists and antagonists had no effect. In contrast, the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in the NB4 myeloid leukaemic cell line was unaffected by the specific VDRnuc and RXR antagonists, but was blocked by a VDRmem-specific antagonist and was increased by VDRmem-specific agonists. The findings reveal that VDRnuc-RXR-heterodimers play a key role in the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells. However, in NB4 cells, VDRnuc-derived signals do not play an obligatory role, and non-genomic VDRmem-derived signals are important.  相似文献   

10.
In search of new selective antagonists and/or agonists for the human melanocortin receptor subtypes hMC1R to hMC5R to elucidate the specific biological roles of each GPCR, we modified the structures of the superagonist MT-II (Ac-Nle-c[Asp-His-D-Phe-Arg-Trp-Lys]-NH(2)) and the hMC3R/hMC4R antagonist SHU9119 (Ac-Nle-c[Asp-His-D-Nal(2')-Arg-Trp-Lys]-NH(2)) by replacing the His-d-Phe and His-d-Nal(2') fragments in MT-II and SHU9119, respectively, with Aba-Xxx (4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one-Xxx) dipeptidomimetics (Xxx=D-Phe/pCl-D-Phe/D-Nal(2')). Employment of the Aba mimetic yielded novel selective high affinity hMC3R and hMC3R/hMC5R antagonists.  相似文献   

11.

Background

G protein-coupled receptors (GPCRs) play central roles in mediating cellular responses to environmental signals leading to changes in cell physiology and behaviors, including cell migration. Numerous clinical pathologies including metastasis, an invasive form of cell migration, have been linked to abnormal GPCR signaling. While the structures of some GPCRs have been defined, the in vivo roles of conserved amino acid residues and their relationships to receptor function are not fully understood. Trapped in endoderm 1 (Tre1) is an orphan receptor of the rhodopsin class that is necessary for primordial germ cell migration in Drosophila melanogaster embryos. In this study, we employ molecular genetic approaches to identify residues in Tre1 that are critical to its functions in germ cell migration.

Methodology/Principal Findings

First, we show that the previously reported scattershot mutation is an allele of tre1. The scattershot allele results in an in-frame deletion of 8 amino acids at the junction of the third transmembrane domain and the second intracellular loop of Tre1 that dramatically impairs the function of this GPCR in germ cell migration. To further refine the molecular basis for this phenotype, we assayed the effects of single amino acid substitutions in transgenic animals and determined that the arginine within the evolutionarily conserved E/N/DRY motif is critical for receptor function in mediating germ cell migration within an intact developing embryo.

Conclusions/Significance

These structure-function studies of GPCR signaling in native contexts will inform future studies into the basic biology of this large and clinically important family of receptors.  相似文献   

12.
Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states. GPCR genes implicated in asthma endophenotypes include variants of the cysteinyl leukotriene receptors (CYSLTR1 and CYSLTR2), and prostaglandin D2 receptors (PTGDR and CRTH2), thromboxane A2 receptor (TBXA2R), beta2-adrenergic receptor (ADRB2), chemokine receptor 5 (CCR5), and the G protein-coupled receptor associated with asthma (GPRA). This review of the contribution of variability in these genes places the contribution of the cysteinyl leukotriene system to respiratory endophenotypes in perspective. The genetic variant(s) of receptors that are associated with endophenotypes are discussed in the context of the extent to which they contribute to a disease phenotype or altered drug efficacy.  相似文献   

13.
G-protein-coupled metabotropic glutamate receptors (GPC mGluRs) are important constituents of glutamatergic synapses where they contribute to synaptic plasticity and development. Here we characterised a member of this family in the honeybee. We show that the honeybee genome encodes a genuine mGluR (AmGluRA) that is expressed at low to medium levels in both pupal and adult brains. Analysis of honeybee protein sequence places it within the type 3 GPCR family, which includes mGlu receptors, GABA-B receptors, calcium-sensing receptors, and pheromone receptors. Phylogenetic comparisons combined with pharmacological evaluation in HEK 293 cells transiently expressing AmGluRA show that the honeybee protein belongs to the group II mGluRs. With respect to learning and memory AmGluRA appears to be required for memory formation. Both agonists and antagonists selective against the group II mGluRs impair long-term (24 h) associative olfactory memory formation when applied 1 h before training, but have no effect when injected post-training or pre-testing. Our results strengthen the notion that glutamate is a key neurotransmitter in memory processes in the honeybee.  相似文献   

14.
G-protein-coupled receptor (GPCR) internalization provides a G-protein-subtype-independent method for assaying agonist-stimulated activation of receptors. We have developed a novel assay that allows quantitative analysis of GPCR internalization based on the interaction between activated GPCRs and β-arrestin2 and on Nostoc punctiforme DnaE intein-mediated reconstitution of Renilla luciferase fragments. This assay system was validated using four functionally divergent GPCRs treated with agonists and antagonists. The EC(50) values obtained for the known agonists and antagonists are in close agreement with the results of previous reports, indicating that this assay system is sensitive enough to permit quantification of GPCR internalization. This rapid and quantitative assay, therefore, could be used universally as a functional cell-based assay for GPCR high-throughput screening during drug discovery.  相似文献   

15.
To expedite G-protein-coupled receptor (GPCR) drug screening studies, cell lines amenable to transfection (e.g. CHO cells) have been widely used as cellular models. These cells can be frozen in a ready-to-use format, allowing screening of a single batch of cells and validation of the cellular material prior to the screening run. A common method used to deliver frozen cells to screening programs is to γ-irradiate the cells, abrogating cell division after thawing and ensuring consistency in the number of cells analyzed per well. With the recognition that signaling proteins such as ERK and Akt are important markers of GPCR activation, along with the availability of suitable assays for their measurement, these outputs have become important for GPCR screening programs. Here we show that several γ-irradiated and frozen CHO-K1 cell lines expressing transfected GPCRs, initially optimized for performing cAMP or AequoScreen calcium flux assays, can be used for the measurement of GPCR-mediated ERK and Akt phosphorylation. Furthermore, CHO-K1 cells transfected with NOP or GAL(1) receptors show pharmacology for a number of agonists and antagonists that is consistent with non-irradiated cultured lines. These data indicate that γ-irradiated CHO-K1 cells can be reliably used for the measurement of GPCR-mediated kinase signaling outputs.  相似文献   

16.
Rho family GTPases play important roles in the regulation of intracellular signals induced by activated heterotrimeric G proteins of the α12/13 family. The α12/13 subunits activate Rho GTPases through direct binding to a group of Rho guanine nucleotide exchange factors (GEFs) characterized by the presence of a G protein signaling-like (RGL) domain. The Rho GEF proto-Dbl, that does not contain a RGL domain, was also found to link Gα12/13 signals to Rho. We have explored the effects of activated Gα13 and Gα13-associated G protein-coupled receptor (GPCR) agonists on proto-Dbl regulation. We show that activated Gα13, but not Gα12 or Gαq, induces translocation of proto-Dbl to the cell membrane with consequent enlargement of cell body and membrane ruffling. These effects were evident also when Gα13-associated GPCR agonists were used on cells expressing proto-Dbl and were accompanied by the activation of Cdc42 and RhoA GTPases and further downstream effector JNK and p38 kinases. Moreover, we show that both activated Gα13 and GPCR agonists stimulate proto-Dbl interaction with ezrin to promote ezrin translocation to the plasma membrane. These results suggest a mechanism by which proto-Dbl and its effector pathways are regulated by Gα13-mediated signals through association with ezrin.  相似文献   

17.
A novel cell-based functional assay to directly monitor G protein-coupled receptor (GPCR) activation in a high-throughput format, based on a common GPCR regulation mechanism, the interaction between beta-arrestin and ligand-activated GPCR, is described. A protein-protein interaction technology, the InteraX trade mark system, uses a pair of inactive beta-galactosidase (beta-gal) deletion mutants as fusion partners to the protein targets of interest. To monitor GPCR activation, stable cell lines expressing both GPCR- and beta-arrestin-beta-gal fusion proteins are generated. Following ligand stimulation, beta-arrestin binds to the activated GPCR, and this interaction drives functional complementation of the beta-gal mutant fragments. GPCR activation is measured directly by quantitating restored beta-gal activity. The authors have validated this assay system with two functionally divergent GPCRs: the beta2-adrenergic amine receptor and the CXCR2 chemokine-binding receptor. Both receptors are activated or blocked with known agonists and antagonists in a dose-dependent manner. The beta2-adrenergic receptor cell line was screened with the LOPAC trade mark compound library to identify both agonists and antagonists, validating this system for high-throughput screening performance in a 96-well microplate format. Hit specificity was confirmed by quantitating the level of cAMP. This assay system has also been performed in a high-density (384-well) microplate format. This system provides a specific, sensitive, and robust methodology for studying and screening GPCR-mediated signaling pathways.  相似文献   

18.
Pharmacological and genetic tools targeting the 5-hydroxytryptamine (5-HT)7 receptor in preclinical animal models have implicated this receptor in diverse (patho)physiological processes of the central nervous system (CNS). Some data obtained with 5-HT7 receptor knockout mice, selective antagonists, and, to a lesser extent, agonists, however, are quite contradictory. In this review, we not only discuss in detail the role of the 5-HT7 receptor in the CNS but also propose some hypothetical models, which could explain the observed inconsistencies. These models are based on two novel concepts within the field of G protein-coupled receptors (GPCR), namely biphasic signaling and G protein-independent signaling, which both have been shown to be mediated by GPCR dimerization. This led us to suggest that the 5-HT7 receptor could reside in different dimeric contexts and initiate different signaling pathways, depending on the neuronal circuitry and/or brain region. In conclusion, we highlight GPCR dimerization and G protein-independent signaling as two promising future directions in 5-HT7 receptor research, which ultimately might lead to the development of more efficient dimer- and/or pathway-specific therapeutics.  相似文献   

19.
Protease activated receptor 2 (PAR2) has emerged as one of the promising therapeutic targets to inhibit rapidly metastasizing breast cancer cells. However, its elusive molecular mechanism of activation and signaling has made it a difficult target for drug development. In this study, in silico methods were used to unfold PAR2 molecular mechanism of signaling based on the concept of GPCR receptor plasticity. Although, there are no conclusive evidences of the presence of specific endogenous ligands for PAR2, the efficacy of synthetic agonist and antagonist in PAR2 signaling has opened up the possibilities of ligand-mediated signaling. Furthermore, it has been proved that ligands specific for one GPCR can induce signaling in GPCRs belonging to other subfamilies. Therefore, the aim of this study was to identify potential agonists and antagonists from the GPCR ligand library (GLL), which may induce biased signaling in PAR2 using the concept of existence of multiple ligand-stabilized receptor conformations. The results of our in silico study suggest that PAR2 may show biased signaling mainly with agonists of serotonin type 1, β-adrenergic type 1,3 and antagonists of substance K (NK1), serotonin type 2, dopamine type 4, and thromboxane receptors. Further, this study also throws light on the putative ligand-specific conformations of PAR2. Thus, the results of this study provide structural insights to putative conformations of PAR2 and also gives initial clues to medicinal chemists for rational drug design targeting this challenging receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号