首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequencies of occurrence of four bases in the first, second and third codon positions and in the total coding sequences have been calculated by the codon usage table published in 1990 by Ikemura et al. The distribution of frequencies are further analysed in detail by a graphic technique presented recently by us. Formulas expressing the frequencies of four bases in the first and second codon positions in terms of frequencies of amino acids have been given. It is shown by the graphic analysis that for 90 species, in the first codon position the purine bases are dominant and in most cases G is the most dominant base. In the second codon position A is the most dominant base, while G is the least dominant base. In the third codon position the G + C content varies from 0.1 to 0.9, keeping the A + C content equal to 1/2 and G content equal to that of C, approximately. If the frequencies for bases A, C, G and U in the total coding sequences are denoted by a, c, g and u, respectively, it is found that the unequal formula: a2 + c2 + g2 + u2 less than 1/3, is valid for each of the 90 species including the human and E.coli etc.  相似文献   

2.
3.
4.
Abstract

The distribution patterns of bases of DNA fragments in different regions in P. aeruginosa genome are analyzed in this paper. It's shown that 5565 protein-coding genes, 17315 non- coding ORFs, and 1104 intergenic sequences are located into seven clusters based on their base frequencies. Almost all the protein-coding genes are contained in one of the seven clusters. The significant difference of base frequencies among three codon positions in high GC genome, which arouse the division between the distribution patterns of bases of six reading frames of protein-coding genes, is responsible for the appearance of the clustering phenomenon. In the light of the clustering phenomenon, the author supposes that the anitisense strand ORFs, particularly those corresponding to Frame 2′ and Frame 3′, may not code for proteins in P. aeruginosa genome.  相似文献   

5.
The frequencies of A, C, G, and T in mitochondrial DNA vary among species due to unequal rates of mutation between the bases. The frequencies of bases at fourfold degenerate sites respond directly to mutation pressure. At first and second positions, selection reduces the degree of frequency variation. Using a simple evolutionary model, we show that first position sites are less constrained by selection than second position sites and, therefore, that the frequencies of bases at first position are more responsive to mutation pressure than those at second position. We define a measure of distance between amino acids that is dependent on eight measured physical properties and a similarity measure that is the inverse of this distance. Columns 1, 2, 3, and 4 of the genetic code correspond to codons with U, C, A, and G in their second position, respectively. The similarity of amino acids in the four columns decreases systematically from column 1 to column 2 to column 3 to column 4. We then show that the responsiveness of first position bases to mutation pressure is dependent on the second position base and follows the same decreasing trend through the four columns. Again, this shows the correlation between physical properties and responsiveness. We determine a proximity measure for each amino acid, which is the average similarity between an amino acid and all others that are accessible via single point mutations in the mitochondrial genetic code structure. We also define a responsiveness for each amino acid, which measures how rapidly an amino acid frequency changes as a result of mutation pressure acting on the base frequencies. We show that there is a strong correlation between responsiveness and proximity, and that both these quantities are also correlated with the mutability of amino acids estimated from the mtREV substitution rate matrix. We also consider the variation of base frequencies between strands and between genes on a strand. These trends are consistent with the patterns expected from analysis of the variation among genomes. [Reviewing Editor: Dr. David Pollock]  相似文献   

6.
Compositional distributions in the three codon positions of the coding sequences of 12 fully sequenced prokaryotic genomes, which are publicly available, were investigated. A universal compositional correlation was observed in most of the genomes under investigation irrespective of their overall genomic GC contents. In all the genomes, the GC contents at the first codon positions are always greater than the overall GC contents of the genomes whereas the reverse is true in the case of second codon positions. GC contents at the third codon positions are higher than the overall genomic GC contents in high GC containing genomes, and the opposite situation was found in case of low GC genomes except for Helicobacter pylori. In high-GC rich genomes, the GC contents at the first + second codon positions are less than the GC contents at the third codon positions, and they are low in low-GC genomes except for Helicobacter pylori. The distributions of four bases at the three different positions were also investigated for all 12 organisms. It was observed that in high-GC genomes G is the most dominant base and in low-GC genomes A is the most dominant base in the first codon positions. But purine bases, i.e., (A + G), predominantly occur in the first codon position. In the second codon position, A is the most dominant base in most of the organisms and G is the least dominant base in all the organisms. There is no unique regular pattern of individual bases at the third codon positions; however, there are significant differences in the occurrences of (G + C) contents in the third codon positions among the different organisms. Calculations of dinucleotide frequencies in 12 different organisms indicate that in GC-rich genomes GG, GC, CC, and CG dinucleotides are the most dominant whereas the reverse is true in case of low-GC genomes. Biological implications of these results are discussed in this paper.  相似文献   

7.
应用生物信息学方法,对已完成测序的62种细菌基因组进行:1.同一密码子碱基位置上不同碱基分布频率的比较;2.不同密码子碱基位置上同一碱基分布频率的比较。结果显示:1.三个密码子碱基位置上及四种碱基的分布频率差异存在显著性;2.三个密码子碱基位置上的四种碱基的分布频率显著相关。结论提示,在细菌的进化过程中,任一密码子碱基位置上任一碱基的分布有可能受到所处密码子碱基位置及其他三种碱基分布的影响。  相似文献   

8.
《Gene》1998,215(2):405-413
Biases in the codon usage and base compositions at three codon sites in different genes of A+T-rich Gram-negative bacterium Haemophillus influenzae and G+C-rich Gram-positive bacterium Mycobacterium tuberculosis have been examined to address the following questions: (1) whether the synonymous codon usage in organisms having highly skewed base compositions is totally dictated by the mutational bias as reported previously (Sharp, P.M., Devine, K.M., 1989. Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do `prefer' optimal codons. Nucleic Acids Res. 17, 5029–5039), or is also controlled by translational selection; (2) whether preference of G in the first codon positions by highly expressed genes, as reported in Escherichia coli (Gutierrez, G., Marquez, L., Marin, A., 1996. Preference for guanosine at first codon position in highly expressed Escherichia coli genes. A relationship with translational efficiency. Nucleic Acids Res. 24, 2525–2527), is true in other bacteria; and (3) whether the usage of bases in three codon positions is species-specific. Result presented here show that even in organisms with high mutational bias, translational selection plays an important role in dictating the synonymous codon usage, though the set of optimal codons is chosen in accordance with the mutational pressure. The frequencies of G-starting codons are positively correlated to the level of expression of genes, as estimated by their Codon Adaptation Index (CAI) values, in M. tuberculosis as well as in H. influenzae in spite of having an A+T-rich genome. The present study on the codon preferences of two organisms with oppositely skewed base compositions thus suggests that the preference of G-starting codons by highly expressed genes might be a general feature of bacteria, irrespective of their overall G+C contents. The ranges of variations in the frequencies of individual bases at the first and second codon positions of genes of both H. influenzae and M. tuberculosis are similar to those of E. coli, implying that though the composition of all three codon positions is governed by a selection-mutation balance, the mutational pressure has little influence in the choice of bases at the first two codon positions, even in organisms with highly biased base compositions.  相似文献   

9.
Wide ranging studies of the readthrough of translational stop codons within the last 25 years have suggested that the stop codon might be only part of the molecular signature for recognition of the termination signal. Such studies do not distinguish between effects on suppression and effects on termination, and so we have used a number of different approaches to deduce whether the stop signal is a codon with a context or an extended factor recognition element. A data base of natural termination sites from a wide range of organisms (148 organisms, 40000 sequences) shows a very marked bias in the bases surrounding the stop codon in the genes for all organisms examined, with the most dramatic bias in the base following the codon (+4). The nature of this base determines the efficiency of the stop signal in vivo, and in Escherichia coli this is reinforced by overexpressing the stimulatory factor, release factor-3. Strong signals, defined by their high relative rates of selecting the decoding release factors, are enhanced whereas weak signals respond relatively poorly. Site-directed cross-linking from the +1, and bases up to +6 but not beyond make close contact with the bacterial release factor-2. The translational stop signal is deduced to be an extended factor recognition sequence with a core element, rather than simply a factor recognition triplet codon influenced by context.  相似文献   

10.
To an approximation Chargaff's rule (%A = %T; %G = %C) applies to single-stranded DNA. In long sequences, not only complementary bases but also complementary oligonucleotides are present in approximately equal frequencies. This applies to all species studied. However, species usually differ in base composition. With the goal of understanding the evolutionary forces involved, I have compared the frequencies of trinucleotides in long sequences and their shuffled counterparts. Among the 32 complementary trinucleotide pairs there is a hierarchy of frequencies which is influenced both by base composition (not affected by shuffling the order of the bases) and by base order (affected by shuffling). The influence of base order is greatest in DNA of 50% G + C and seems to reflects a more fundamental hierarchy of dinucleotide frequencies. Thus if TpA is at low frequency, all eight TpA-containing trinucleotides are at low frequency. Mammals and their viruses share similar hierarchies, with intra- and intergenomic differences being mainly associated with differences in base composition (percentage G + C). E. coli and, to a lesser extent, Drosophila melanogaster hierarchies differ from mammalian hierarchies; this is associated with differences both in base composition and in base order. It is proposed that Chargaff's rule applies to single-stranded DNA because there has been an evolutionary selection pressure favoring mutations that generate complementary oligonucleotides in close proximity, thus creating a potential to form stem-loops. These are dispersed throughout genomes and are rate-limiting in recombination. Differences in (G + C)% between species would impair interspecies recombination by interfering with stem-loop interactions.  相似文献   

11.
Codon usage in Clonorchis sinensis was analyzed using 12,515 codons from 38 coding sequences. Total GC content was 49.83%, and GC1, GC2 and GC3 contents were 56.32%, 43.15% and 50.00%, respectively. The effective number of codons converged at 51-53 codons. When plotted against total GC content or GC3, codon usage was distributed in relation to GC3 biases. Relative synonymous codon usage for each codon revealed a single major trend, which was highly correlated with GC content at the third position when codons began with A or U at the first two positions. In codons beginning with G or C base at the first two positions, the G or C base rarely occurred at the third position. These results suggest that codon usage is shaped by a bias towards G or C at the third base, and that this is affected by the first and second bases.  相似文献   

12.
Summary The time rate of regeneration of the cell wall and reversion of protoplasts of the yeast Nadsonia elongata to cells of normal shape and size has been compared with the capability for regeneration of spheroplasts of this yeast. Nearly all protoplasts in a given culture were able to regenerate new walls and had usually reverted to cells of normal appearance by the 30th h of cultivation. Spheroplasts required only half this time to do this. These results can be interpreted as evidence that regeneration of a wall by protoplasts does not depend upon the presence of a cell wall primer, because the proportion of reverting protoplasts (which lack wall remnants) was the same as that of reverting spheroplasts (which possess them). The presence of wall remnants in spheroplasts appears to have merely an accelerating effect on the formation of a new wall and on subsequent reversion of the spheroplasts to complete cells of normal shape and size.  相似文献   

13.
L Bossi  J R Roth 《Cell》1981,25(2):489-496
The frameshift suppressor sufJ acts to correct a set of +1 frameshift mutations having very different sequences at their mutant sites. This suppressor acts by reading a 4 base codon located near, but not at, the site of each suppressible mutation. Suppression thus necessitates out-of-phase translation of the short stretch of mRNA between the site of action of the suppressor tRNA and the site of the frameshift mutation. We have identified the site read by sufJ by mutationally creating a series of such sites in the neighborhood of a previously nonsuppressible frameshift mutation. Each of the newly generated sites was formed by base substitution. Four independently generated sites were analyzed by DNA sequencing. At each site the quadruplet codon ACCX was generated (where X is A, U or C). Thus sufJ is able to read a 4 base codon in which any of three bases is acceptable in the fourth position. This is the first frameshift suppressor that does not read a run of three repeated bases in the first three positions of its codon.  相似文献   

14.
Summary We have isolated and characterized a new mutant of Saccharomyces cerevisiae, carrying a single mutant allele that we designate ngm2-1, which is defective with respect to induced mutagenesis. This mutant was isolated by screening mutagenized clones for reduced frequencies of reversion of the his1-7 allele, induced by N-methyl-N-nitro-N-nitrosoguanidine. As judged by the reversion of his1-7 and ilv1-92, ngm2-1 mutant strains are also deficient with respect to mutability induced by methyl methane sulfonate, ethyl methane sulfonate and, at least partially, by UV. UV-induced reversion of the ochre mutation arg4-17 and the frameshift mutation his4-38 was not much affected by ngm2-1, however. Like rev3 and rev7 mutations, ngm2-1 also has little influence on the reversion of the proline missense allele, cyc1-115. Ngm2-1 mutants are only at best very slightly more sensitive to the toxicity of the four mutagens used, and homozygous diploids sporulate normally.  相似文献   

15.
A model of evolutionary base substitutions that can incorporate different substitutional rates between the four bases and that takes into account unequal composition of bases in DNA sequences is proposed. Using this model, we derived formulae that enable us to estimate the evolutionary distances in terms of the number of nucleotide substitutions through comparative studies of nucleotide sequences. In order to check the validity of various formulae, Monte Carlo experiments were performed. These formulae were applied to analyze data on DNA sequences from diverse organisms. Particular attention was paid to problems concerning a globin pseudogene in the mouse and the time of its origin through duplication. We obtained a result suggesting that the evolutionary rates of substitution in the first and second codon positions of the pseudogene were roughly 10 times faster than those in the normal globin genes; whereas, the rate in the third position remained almost unchanged. Application of our formulae to histone genes H2B and H3 of the sea urchin showed that, in each of these genes, the rate in the third codon position is tremendously higher than that in the second position. All of these observations can easily and consistently be interpreted by the neutral theory of molecular evolution.  相似文献   

16.
The distribution patterns of bases of DNA fragments in different regions in P. aeruginosa genome are analyzed in this paper. It's shown that 5565 protein-coding genes, 17315 non-coding ORFs, and 1104 intergenic sequences are located into seven clusters based on their base frequencies. Almost all the protein-coding genes are contained in one of the seven clusters. The significant difference of base frequencies among three codon positions in high GC genome, which arouse the division between the distribution patterns of bases of six reading frames of protein-coding genes, is responsible for the appearance of the clustering phenomenon. In the light of the clustering phenomenon, the author supposes that the anitisense strand ORFs, particularly those corresponding to Frame 2' and Frame 3', may not code for proteins in P. aeruginosa genome.  相似文献   

17.
18.
Abstract

The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

19.
Neighbor effects in the mutation of ochre triplets in the T 4 rII gene   总被引:4,自引:0,他引:4  
Y Salts  A Ronen 《Mutation research》1971,13(2):109-113
In 15 sites in the T4rII gene, mutation from the ochre (UAA) codon to amber (UAG), opal (UGA) and the wild-type was measured with and without 2-aminopurine treatment. It is shown that a particular base pair in the DNA may show variable mutability, depending on its nearest neighbors. Also, similar base pairs at different sites in the gene can vary in their mutability despite the fact that they are flanked by similar neighbors.  相似文献   

20.
Translational selection on codon usage in Xenopus laevis   总被引:2,自引:0,他引:2  
A correspondence analysis of codon usage in Xenopus laevis revealed that the first axis is strongly correlated with the base composition at third codon positions. The second axis discriminates between putatively highly expressed genes and the other coding sequences, with expression levels being confirmed by the analysis of Expressed sequence tag frequencies. The comparison of codon usage of the sequences displaying the extreme values on the second axis indicates that several codons are statistically more frequent among the highly expressed (mainly housekeeping) genes. Translational selection appears, therefore, to influence synonymous codon usage in Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号