首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidylserine (lysoPS) strongly enhances degranulation of rat mast cells induced by concanavalin A (Con A). In the present paper, the metabolism of exogenous lysoPS in intact mast cells was investigated. Incubation of mast cells with 1-stearoyl-sn-glycero-3-phospho-[3-3H]serine resulted in the rapid binding of lysoPS to mast cells and the time-dependent formation of a considerable amount of [3H]phosphatidylserine. No other radiolabeled lipid metabolites were detected. These results suggest that phosphatidylserine (PS) is synthesized through acylation of lysoPS incorporated into mast cells. Most of the lysoPS associated with mast cells was removed by washing with bovine serum albumin, whereas PS newly formed from lysoPS was not. The cells washed with albumin showed no appreciable histamine release upon subsequent addition of Con A. A different set of experiments was performed using lysoPS analogs which were modified at the hydroxyl group at position 2 of glycerol to avoid acylation. 1-Stearoyl-2-O-methyl-glycero-3-phosphoserine showed almost the same potentiating activity as 1-stearoyl-lysoPS, although the former does not have the free hydroxyl moiety at position 2 of the glycerol residue. The enhancing activity of another lysoPS analog, 1-stearyl-propanediol-3-phosphoserine, which lacks the hydroxyl group altogether, was quite similar to that of 1-stearyl-lysoPS. From these results we conclude that the acylation of lysoPS bears no relation to its potentiating activity and that lysoPS acts toward mast cells as lysoPS itself without any conversion to PS. The effect of replacement of an ester bond at position 1 of glycerol in lysoPS with an ether bond, and the phospholipid composition of rat mast cells are also discussed.  相似文献   

2.
Covalently bound C3b is released from cell surfaces (EAC1423 and zymosan-C3b) on incubation under physiologic conditions. The release of C3b from cell surfaces occurs by the cleavage of the covalent bond. Sodium dodecyl sulfate (SDS) abolishes the release, thereby indicating the requirement of the native structure of C3b in this process. The phenomenon of release of C3b from cell surfaces has also been observed in the fluid-phase system by using C3b-[3H]glycerol. The kinetics of the release of [3H]glycerol from C3b-[3H]glycerol were studied at 37 degrees C in 0.15 M phosphate buffer, pH 7.4. The first-order rate constant was found to be 0.028 +/- 0.003 hr-1. The release does not take place in either 8 M urea or 6 M guanidine hydrochloride, at pH 7.4. Under alkaline conditions, the rate of release is unaffected in the presence of SDS, indicating that the release in this pH range is not dependent on the native structure of the protein. From the Arrhenius plot in the temperature range 18 to 37 degrees C, an apparent activation energy for the hydrolysis reaction of 21.2 kcal/mol was calculated. The release phenomenon is exclusive for ester-linked complexes, as inferred by the absence of release of [3H]threonine from C3b-[3H]threonine, wherein the linkage is of the amide type. The presence or absence of the C3a portion of the molecule has no effect on the rate of release. The modification of the -SH group of C3i-/C3b-[3H]glycerol alters the rate of hydrolysis of the ester bond between C3i/C3b and [3H]glycerol. Protease inhibitors (PMSF, benzamidine HCl, and DFP) do not alter the rate of release, indicating that the hydrolysis reaction is not due to trace amounts of contaminating proteases. Thus, it appears that some chemical group(s) of C3i/C3b is (are) involved in the intramolecular hydrolysis of the ester bond between C3i/C3b and small molecules. This phenomenon may play an important role in the release of C3b from receptive surfaces once the biologic functions that require covalently bound C3b have been mediated.  相似文献   

3.
The specificity of the phospholipid cofactor requirement of rat brain protein kinase C was investigated using Triton X-100 mixed micellar methods. Sixteen analogues of phosphatidylserine were prepared and tested for their ability to support protein kinase C activity, [3H]phorbol 12,13-dibutyrate binding, and protein kinase C binding to mixed micelles. Phosphatidylserinol, -L-serine methyl ester, -N-acetyl-L-serine, -2-hydroxyacetate, -3-hydroxypropionate, and -4-hydroxybutyrate did not activate protein kinase C in mixed micelles containing 2 mol % of sn-1,2-dioleoylglycerol. This indicates that both the carboxyl and amino moieties are important for activation. Phosphatidyl-D-serine and -L-homoserine were incapable of supporting full activation; this demonstrates stereospecificity and the importance of the distance between the phosphate and carboxyl and amino moieties. Since 1,2-rac-phosphatidyl-L-serine and 1,3-phosphatidyl-L-serine fully supported protein kinase C activity, the stereochemistry within the glycerol backbone at the interface was not necessary for maximal activation. Neither lysophosphatidyl-L-serine nor 1-oleoyl-2-acetyl-sn-glycero-3-phospho-L-serine supported protein kinase C activity implying that the interfacial conformation is critical to the activation process. The phospholipid dependencies of [3H]phorbol 12,13-dibutyrate binding and of protein kinase C binding to mixed micelles containing sn-1,2-dioleoylglycerol did not mirror those for activation. The data demonstrate that protein kinase C possesses a high degree of specificity with respect to phospholipid activation and implicate several functional groups within the phospho-L-serine polar head group in binding and activation.  相似文献   

4.
T Tamura  M Wada  N Esaki    K Soda 《Journal of bacteriology》1995,177(9):2265-2269
Streptomyces cattleya produces fluoroacetate and 4-fluorothreonine from inorganic fluoride added to the culture broth. We have shown by 19F nuclear magnetic resonance (NMR) spectrometry that fluoroacetate is accumulated first in the culture broth and that accumulation of 4-fluorothreonine is next. To show precursors of the carbon skeleton of fluoroacetate, we carried out tracer experiments with various 14C- and 13C-labeled compounds. Radioactivity of [U-14C]glucose, [U-14C]glycerol, [U-14C]serine, and [U-14C]beta-hydroxypyruvate was incorporated into fluoroacetate to an extent of 0.2 to 0.4%, whereas [3-14C]pyruvate, [2,3-14C]succinate, and [U-14C]aspartate were less efficiently incorporated (0.04 to 0.08%). The addition of [2-13C]glycerol to the mycelium suspension of Streptomyces cattleya caused exclusive enrichment of the carboxyl carbon of fluoroacetate with 13C; about 40% of carboxyl carbon of fluoroacetate was labeled with 13C. We studied the radioactivity incorporation of [3-14C]-, [U-14C]-, and [1-14C]beta-hydroxypyruvates to show that C-2 and C-3 of beta-hydroxypyruvate are exclusively converted to the carbon skeleton of fluoroacetate. These results suggest that the carbon skeleton of fluoroacetate derives from C-1 and C-2 of glycerol through beta-hydroxypyruvate, whose hydroxyl group is eventually replaced by fluoride.  相似文献   

5.
During blood clotting Factor XIIIa, a transglutaminase, catalyzes the formation of covalent bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of peptide-bound glutamine residues between fibrin molecules. We report that glycyl-L-prolyl-L-arginyl-L-proline (GPRP), a tetrapeptide that binds to the fibrin polymerization sites (D-domain) in fibrin(ogen), inhibits transglutaminase cross-linking by modifying the glutamine residues in the alpha- and gamma-chains of fibrinogen. Purified platelet Factor XIIIa, and tissue transglutaminase from adult bovine aortic endothelial cells were used for the cross-linking studies. Gly-Pro (GP) and Gly-Pro-Gly-Gly (GPGG), peptides which do not bind to fibrinogen, had no effect on transglutaminase cross-linking. GPRP inhibited platelet Factor XIIIa-catalyzed cross-linking between the gamma-chains of the following fibrin(ogen) derivatives: fibrin monomers, fibrinogen and polymerized fibrin fibers. GPRP functioned as a reversible, noncompetitive inhibitor of Factor XIIIa-catalyzed incorporation of [3H]putrescine and [14C]methylamine into fibrinogen and Fragment D1. GPRP did not inhibit 125I-Factor XIIIa binding to polymerized fibrin, demonstrating that the Factor XIIIa binding sites on fibrin were not modified. GPRP also had no effect on Factor XIIIa cross-linking of [3H]putrescine to casein. This demonstrates that GPRP specifically modified the glutamine cross-linking sites in fibrinogen, and had no effect on either Factor XIIIa or the lysine residues in fibrinogen. GPRP also inhibited [14C]putrescine incorporation into the alpha- and gamma-chains of fibrinogen without inhibiting beta-chain incorporation, suggesting that the intermolecular cross-linking sites were selectively affected. Furthermore, GPRP inhibited tissue transglutaminase-catalyzed incorporation of [3H]putrescine into both fibrinogen and Fragment D1, without modifying [3H]putrescine incorporation into casein. GPRP also inhibited intermolecular alpha-alpha-chain cross-linking catalyzed by tissue transglutaminase. This demonstrates that the glutamine residues in the alpha-chains involved in intermolecular cross-linking are modified by GPRP. This is the first demonstration that a molecule binding to the fibrin polymerization sites on the D-domain of fibrinogen modifies the glutamine cross-linking sites on the alpha- and gamma-chains of fibrinogen.  相似文献   

6.
Binding activity of [3H]inositol 1,3,4,5-tetrakisphosphate (InsP4) was characterized with rat cerebellar membranes. Two types of InsP4 analog with either the aminobenzoyl or the aminocyclohexanecarbonyl group on the 2nd position of InsP4 have been synthesized and their effects on the binding activity were also examined. [3H]InsP4 binding was gradually displaced by increasing amounts of unlabeled InsP4, with an IC50 of 60-170 nM, depending on the pH values. The binding was sharply increased at acidic pH and millimolar concentrations of Ca2+, this being in clear contrast with [3H]InsP3 binding noted in the same species of tissue. Heparin inhibited the binding, with an IC50 of 1.7, 3 or 20 micrograms/ml at pH 8.3, 7.2 or 5.0, respectively. Adenine nucleotide inhibited the binding more potently than did [3H]InsP3 binding. InsP4 analogs were as effective as InsP4 in displacing [3H]InsP4 from rat cerebellar membranes, thereby indicating that the 2nd hydroxyl group may not be involved in recognition of InsP4 by its binding sites.  相似文献   

7.
I examined whether the phorbol ester-mediated inhibition of glycerol 3-phosphate dehydrogenase (GPDH) induction could be mimicked by raising the cellular diacylglycerol levels. Phorbol ester tumor promoters and diacylglycerols activate protein kinase C. An increase in radiolabeled diacylglycerol levels in C6 rat glioma cells was observed when cells were prelabeled overnight with [3H]arachidonic acid and treated with either phospholipase C (Clostridium perfringens) or 2-bromooctanoate. The increase was dose dependent. The diacylglycerols competed with [20-3H]phorbol 12,13-dibutyrate in binding to the phorbol ester receptor. A Scatchard analysis of the binding of cells treated with 0.1 unit/ml of phospholipase C demonstrated that the inhibition was mainly due to a decrease in binding affinity and not in the total number of binding sites. 2-Bromooctanoate and phospholipase C, but not the synthetic diacylglycerol 1-oleoyl 2-acetyl glycerol, inhibited the glucocorticoid induction of GPDH levels. Boiled phospholipase C, phospholipase A2, or phospholipase D was ineffective in inhibiting induction, a result suggesting that the inhibition was not due to nonspecific membrane perturbation. Thus, inhibition of the glucocorticoid-mediated increase in GPDH induction is most likely mediated by protein kinase C, and not by an alternate phorbol ester receptor.  相似文献   

8.
We describe two factors in human placenta that modulate the interaction of phorbol ester tumor promoters with cell membranes or with protein kinase C. One, phorbol ester binding inhibitory factor, can inhibit binding of [3H]phorbol-12,13-dibutyrate to cultured cells or to a membrane fraction but does not inhibit its binding to a homogeneous C kinase preparation (phorbol ester binding sites). The other, C kinase activating factor, stimulates C kinase activity in a calcium-dependent manner. We separated these two biochemical activities from a crude human placental fraction by gel filtration.  相似文献   

9.
It is now generally accepted that protoporphyrinogen oxidase is the target-enzyme for diphenyl-ether-type herbicides. Recent studies [Camadro, J-M., Matringe M., Scalla, R. & Labbe, P. (1991) Biochem. J. 277, 17-21] have revealed that in maize, diphenyl ethers competitively inhibit protoporphyrinogen oxidase with respect to its substrate, protoporphyrinogen IX. In this study, we show that, in purified pea etioplast, [3H]acifluorfen specifically binds to a single class of high-affinity binding sites with an apparent dissociation constant of 6.2 +/- 1.3 nM and a maximum density of 29 +/- 5 nmol/g protein. [3H]Acifluorfen binding reaches equilibrium in about 1 min at 30 degrees C. Half dissociation occurs in less than 30 s, indicating that the binding is fully reversible. The specificity of [3H]acifluorfen binding to protoporphyrinogen oxidase is examined. [3H]Acifluorfen binding is inhibited by all the peroxidizing molecules tested. The phthalimide derivative, N-(4-chloro-2-fluoro-5-isopropoxy)phenyl-3,4,5,6-tetra hydrophthalimide, exerts a mixed-competitive inhibition on this binding. The effects of all these molecules on the binding of [3H]acifluorfen are tightly linked to their capacity to inhibit pea etioplast protoporphyrinogen oxidase activity. Furthermore, protoporphyrinogen IX, the substrate of the reaction catalyzed by protoporphyrinogen oxidase, was able to competitively inhibit the binding of [3H]acifluorfen. In contrast, protoporphyrin IX, the product of the reaction, did not inhibit this binding. All these results provide clear evidence that in pea etioplasts, [3H]acifluorfen exclusively binds to protoporphyrinogen oxidase, that the protoporphyrinogen oxidase inhibitors tested so far bind to the same region of the enzyme and that this region overlaps the catalytic site of the enzyme.  相似文献   

10.
The covalent binding of [3H]glycerol to C3 by the transfer of the acyl group of the internal thioester of C3 to the hydroxy group of glycerol can be activated either proteolytically by trypsin or by various chaotropes and denaturants. The activation of binding by trypsin or KBr showed similar dependence on the concentration of glycerol, indicating a similar activation mechanism. It is therefore concluded that the conformational change of the protein is the critical step in the binding reaction, and that the conversion of C3 into C3b under physiological conditions is only a means to induce the conformational change. Guanidinium chloride induces the binding of glycerol to C3 at concentrations of about 1 M. On increasing the concentration of guanidinium chloride the extent of binding declines and is accompanied by an increase in the autolytic cleavage reaction [Sim & Sim (1981) Biochem. J. 193, 129-141]. The autolytic cleavage reaction is therefore not independently activated with respect to the binding reaction. Its occurrence, however, is structurally restricted under physiological or limited denaturing conditions and is permissible only when C3 is brought to a higher denaturation state.  相似文献   

11.
We have investigated the esterification by liver membranes of retinol bound to cellular retinol-binding protein (CRBP). When CRBP carrying [3H]retinol as its ligand was purified from rat liver cytosol and incubated with rat liver microsomes, a significant fraction of the [3H]retinol was converted to [3H]retinyl ester. Esterification of the CRBP-bound [3H]retinol, which was maximal at pH 6-7, did not require the addition of an exogenous fatty acyl group. Indeed, when additional palmitoyl-CoA or coenzyme A was provided, the rate of esterification increased either very slightly or not at all. The esterification reaction had a Km for [3H]retinol-CRBP of 4 +/- 0.6 microM and a maximum velocity of 145 +/- 52 pmol/min/mg of microsomal protein (n = 4). The major products were retinyl palmitate/oleate and retinyl stearate in a ratio of approximately 2 to 1 over a range of [3H]retinol-CRBP concentrations from 1 to 8 microM. The addition of progesterone, a known inhibitor of the acyl-CoA:retinol acyltransferase reaction, consistently increased the rate of retinyl ester formation when [3H]retinol was delivered bound to CRBP. These experiments indicate that retinol presented to liver microsomal membranes by CRBP can be converted to retinyl ester and that this process, in contrast to the esterification of dispersed retinol, is independent of the addition of an activated fatty acid and produces a pattern of retinyl ester species similar to that observed in intact liver. A possible role of phospholipids as endogenous acyl donors in the esterification of retinol bound to CRBP is supported by our observations that depletion of microsomal phospholipid with phospholipase A2 prior to addition of retinol-CRBP decreased the retinol-esterifying activity almost 50%. Conversely, incubating microsomes with a lipid-generating system containing choline, CDP-choline, glycerol 3-phosphate, and an acyl-CoA-generating system prior to addition of retinol-CRBP increased retinol esterification significantly as compared to buffer-treated controls.  相似文献   

12.
T W Martin  D Lagunoff 《Biochemistry》1982,21(6):1254-1260
The presence of phospholipase A2 in intact rat peritoneal mast cells was investigated by using two synthetic radiolabeled phosphatidylserine (PS) substrates. Incubation of intact cells with 1-oleoyl-2-[3H]oleoyl-PS resulted in the release of a considerable quantity of [3H]oleic acid from the substrate. To establish that [3H]oleic acid release was mediated via direct enzymatic attack at the sn-2 position, we measured release of the [3H]serine moiety from the glycerol backbone of 1,2-dimyristoylphosphatidyl[3H]serine. This activity, which represents the combined actions of phospholipases C and D, was 10-fold lower than [3H]oleic acid release, indicating that neither of these enzymes is required for the release of the preponderance of [3H]oleic acid. These results establish the existence in intact rat mast cells of a phospholipase A2 active toward exogenous PS. Over the concentration range at which exogenous PS activates mast cell secretion, intact mast cells and broken cells possessed nearly equal levels of phospholipase A2 activity, and enzyme activity was 3--4-fold higher toward PS than phosphatidylcholine. Several agents were tested for their ability to inhibit phospholipase A2 in intact mast cells. Of the agents tested, an N-substituted derivative of PS previously identified as an inhibitor of mast cell secretion was shown to be a particularly potent and efficacious inhibitor of mast cell phospholipase A2. The concentration dependence of enzyme inhibition paralleled inhibition of histamine secretion, providing a strong positive correlation between the level of phospholipase A2 in mast cells and the capacity for secretion.  相似文献   

13.
Ellman's reagent 5,5'-dithiobis-(2-nitrobenzoic acid) inhibits sodium- and potassium-stimulated ATPase, p-nitrophenyl phosphatase activity, and [3H]ouabain binding to lamb kidney (Na,K)-ATPase. The inactivation of [3H]ouabain binding follows pseudo-first order reaction kinetics at pH values less than or equal to 8.2. The inactivation of [3H]ouabain binding, but not of enzymatic activity, can be blocked by preincubation with ouabagenin, a rapidly reversible aglycone derivative of ouabain. The reduction in [3H]ouabain binding is due to a decrease in the number of binding sites rather than an alteration of the affinity of the enzyme for ouabain. Differential labeling at pH 8.2 with 1.0 mM 5,5'-dithiobis-(2-nitrobenzoic acid), preincubated with or without 5 microM ouabagenin, followed by tryptic digestion and reverse-phase high performance liquid chromatography of the generated soluble peptides reveals a single peptide labeled by the sulfhydryl probe that is protected by ouabagenin. From these results it is concluded that there is a single sulfhydryl group, essential for ouabain binding, presumably located in the ouabain binding site of lamb kidney (Na,K)-ATPase.  相似文献   

14.
Diacylglycerols inhibit binding of [20-3H]phorbol 12,13-dibutyrate ([3H]PDBu) to protein kinase C (the phorbol ester receptor). This inhibition could reflect competitive binding by the diglyceride. Alternatively, it might simply represent perturbation of the lipid environment required for binding activity. As predicted for a competitive mechanism, we report here that inhibitory concentrations of the diglyceride 1,2-diolein do not affect the off-rate of [3H]PDBu from its receptor. This behavior contrasts with that of arachidonic acid, which appears to interact via a mixed mechanism.  相似文献   

15.
Effects of the calmodulin antagonists chlorpromazine, trifluoperazine, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide on phospholipid metabolism were examined in rabbit platelets using [3H]serine, [3H]ethanolamine, [3H]choline, and [3H]glycerol. All these drugs markedly stimulated the incorporation of [3H]serine into phosphatidylserine. On the other hand, these drugs had only a slight effect on the rate of incorporation of [3H]ethanolamine and [3H]choline into the corresponding phospholipid. When [3H]glycerol was used as a precursor of the phospholipids, 3H-labeled phospholipids were mainly composed of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Although the phosphorus content of phosphatidylserine was about 40% of that of phosphatidylcholine in rabbit platelets, the amount of phosphatidylserine labeled with [3H]glycerol was less than 2% of that of the labeled phosphatidylcholine, and calmodulin antagonists slightly stimulated the incorporation of [3H]glycerol into phosphatidylserine. Treatment with calmodulin antagonists caused a marked decrease in the content of endogenous free serine with concomitant increase in the contents of endogenous free ethanolamine and choline. On the other hand, the contents of other free amino acids, including essential and non-essential amino acids, were unchanged. These results suggest that the calmodulin antagonists we used did not affect de novo synthesis of phosphatidylserine, but did stimulate the serine phospholipid base-exchange reaction in rabbit platelets.  相似文献   

16.
A rapid and sensitive assay for [3H]GTP binding activity of tubulin has been developed. This assay method is based on the quantitative retention of [3H]GTP. Tubulin complex on a nitrocellulose membrane filter. It was also found that bovine brain tubulin is markedly stablized by glycerol and GTP against denaturation. A large-scale purification of bovine brain tubulin was achieved using the new assay procedure and by the inclusion of glycerol and GTP in a buffer solution used for column chromatograph. The purified tubulin could be stored at -80degrees in the presence of glycerol and GTP for at least a year without any apprecialbe loss of [3H]GTP- and [3H]colchicine binding activities. The interaction of tubulin with guanine nucleotides was also studied using the nitorcellulose membrane filter procedure. It was found that the binding of [3H]GTP to tubulin with an empty exchangeable site proceeded promptly within k sec while the exchange of [3H]GTP- with a GTP-tubulin complex in which the exchangeable site had been occupied with unlabeled GTP occured more slowly. The dissociation constants for GTP and GDP at the exchangeable site of tubulin were determined as 0.5 times 10-6M and 1.9 times 10-6M, respectively. 5'-Guanylylimidodiphosphate could interact, although less strongly, with tubulin at this site, whereas the interaction of other nucleoside triphosphates includint ATP, CTP, UTP, and 5'-guanylyl methylenediphosphonate was very weak, if it occured at all. The presence of Mg2+ and a free sulfhydryl group was found to be essential for binding of [3H]GTP to tubulin. Ca2+ was found to replace Mg2+ in this binding reaction.  相似文献   

17.
Animal and human tissues contain a microsomal protein that binds nonsteroidal antiestrogens with high affinity and specificity. The functions of these binding sites and the identity of their natural ligands are unknown. Following a report that certain sterols inhibit [3H]tamoxifen binding to this site, we attempted to define the structural requirements for maximal inhibition of [3H]tamoxifen binding to rat liver antiestrogen-binding sites. Our studies identified 5 alpha-cholestan-3 beta-ol-7-one (7-ketocholestanol) as the most potent sterol, having an inhibitory activity that was 12% that of unlabeled tamoxifen and an equilibrium dissociation constant of 6.3 nM. Structural features that appeared important for the inhibitory activity of this sterol include the presence of i) a hydrocarbon side chain at C17; ii) an oxygen function at C7; iii) a hydroxyl group at C3; and iv) the absence of a double-bond between C5 and C6. Saturation analysis and kinetic studies of [3H]tamoxifen binding in the presence of varying concentrations of 7-ketocholestanol clearly indicated that this sterol competed directly with tamoxifen for the antiestrogen-binding site. Unlike tamoxifen, this sterol did not bind to the estrogen receptor. These features make 7-ketocholestanol a potentially valuable tool for studying the properties and functions of this site.  相似文献   

18.
Treatment of murine peritoneal exudate macrophages (PEM) by tumor-promoting phorbol esters (TPA) results in a rapid loss of binding activity to radioactive-labeled colony-stimulating factor ([125I]-CSF-1) on the cell surface. The inhibitory effect of TPA on PEM is transient; treated cells recover full [125I]-CSF-1 binding activity in less than 6 hr at 37 degrees C either in the presence or after the removal of added TPA. The role of phorbol ester receptors in the induction of [125I]-CSF-1 binding inhibition was studied. The biologically active ligand [3H]-phorbol 12,13-dibutyrate ([3H]-PDBu) bound specifically to cultured murine PEM. At 0 degree C, stable and equilibrium binding occurred after 2-3 hr. Scatchard analysis revealed linear plots with a dissociation constant and receptor number per cell of 20.9 nM and 3.9 X 10(5)/cell, respectively. Treatment of PEM with biologically active phorbol esters at 37 degrees C rapidly inhibited the binding activity of [3H]-PDBu on cell surface (down-regulation) and rendered these cells refractory to the TPA-induced [125I]-CSF-1 binding inhibition by the subsequent TPA treatment. The inhibition of phorbol ester binding activity on TPA-treated PEM is caused by a reduction in the total number of available phorbol ester receptors rather than by a decrease in receptor affinity as judged by Scatchard analysis. The disappearance of [3H]-PDBu binding activity is reversible and transient. However, unlike CSF-1 receptors the restoration of phorbol ester receptors on TPA-treated PEM is a very slow process; a prolonged incubation of up to 72 hr after the removal of TPA was required for PEM to regain fully its [3H]-PDBu binding activity. Furthermore, the degree of TPA-induced CSF-1-receptor down-regulation is closely associated with the number of available phorbol ester receptors present on PEM at the time of treatment. Thus, the refractoriness to TPA diminished as the phorbol ester receptors on PEM recovered. A 72-hr incubation time at 37 degrees C was needed for PEM to lose their refractoriness and again become fully sensitive to TPA-induced CSF-1-receptor down-regulation. This study provides evidence that the loss of CSF-1-receptors induced by TPA treatment requires the presence of phorbol ester receptors and proceeds presumably via a co-internalization of both CSF-1 and phorbol ester receptors; the refractoriness to TPA is thereby induced by a transient loss of available phorbol ester receptors.  相似文献   

19.
The [3H]triamcinolone acetonide ([3H]TA)-binding ability of the rat liver glucocorticoid receptor (GR) was investigated under acidic conditions, ranging from pH 2 to 7.3. Both in the presence and absence of 10 mM molybdate, the [3H]TA-binding ability decreased below pH 6.5 and was almost completely lost below pH 5, pH 5.9 +/- 0.1 giving 50% [3H]TA-binding. The binding ability was recovered when the pH of the cytosol was reversed to 7.3 or the precipitate obtained on acidification was dissolved in a buffer of pH 7.3. Moreover, in the absence of molybdate, the [3H]TA-GR complexes formed at pH 7.3 remained unchanged until pH 5. Then they decreased, pH 3.9 +/- 0.1 giving 50% binding, and completely disappeared at pH 3. [3H]TA-binding activity recovered from the precipitate also decreased in a similar pH region (a 50% decrease in binding being observed at pH 4.2 +/- 0.04). These results suggest that rat liver GR is rather resistant under acidic conditions and that it exists in a peculiar state below pH 5.9 to approximately 4 as to its ligand binding property: unoccupied GR has no [3H]TA-binding ability but [3H]TA-GR complexes once formed at neutral pH do not dissociate. [3H]TA-GR complexes recovered from the precipitate at pH 5 had a Stokes radius of 7.5 nm, little DNA-cellulose-binding ability and sedimented at 8.6S on glycerol gradient centrifugation, indicating that the receptor existed in a nontransformed state. In addition, both occupied and unoccupied GR were transformed at about pH 4, their being 50% transformation. This transformation was accompanied by irreversible denaturation of the receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have investigated the reason for the lack of specific 1,25-dihydroxyvitamin D-3 binding activity in extracts of ATCC HL-60 cells. Although intact ATCC HL-60 cells specifically and saturably take up 1,25-dihydroxy[3H]vitamin D-3, whole cell extracts have little or no specific binding of 1,25-dihydroxyvitamin D-3. The absence of specific binding can now be explained by the action of a serine proteinase in these cells. When diisopropylfluorophosphate (DFP), a potent inhibitor of serine proteinase, is added to the buffer used for extraction, specific binding of 1,25-dihydroxy[3H]vitamin D-3 in the extract is observed. The loss of specific binding could not be prevented by hydrolyzed DFP or other serine proteinase inhibitors, such as phenylmethylsulfonylfluoride, benzamidine and aprotinin. The proteolytic activity from ATCC cells also destroyed specific 1,25-dihydroxy[3H]vitamin D-3 binding in high-salt extracts from pig intestinal nuclei or from another HL-60 cell line (LG HL-60 cells). However, the proteinase did not affect the levels of the specific binding in these preparations if the receptor was occupied with 1,25-dihydroxy[3H]vitamin D-3 prior to exposure to the proteinase. The binding and sedimentation characteristics of the receptors from various sources were not changed by the presence of DFP. The Kd of the receptor in ATCC HL-60 cells is 1.2.10(-10) M, which is identical to that in the LG HL-60 cells. The 1,25-dihydroxy[3H]vitamin D-3 receptor complex from the ATCC cells sediments as a single 3.5 S component and elutes from DNA-Sephadex column in two peaks at 0.09 and 0.15 M KCl. The material eluting at 0.15 M KCl has the same DNA-binding activity as preparations from pig intestine or LG HL-60 cells. Immunoprecipitation studies demonstrated that monoclonal antibodies to the pig receptor, IVG8C11, quantitatively precipitate the 1,25-dihydroxy[3H]vitamin D-3-binding activity from ATCC HL-60 cells as well as that from LG HL-60 cells or pig intestinal nuclei. Therefore, the previous failure to demonstrate the 1,25-dihydroxyvitamin D-3 receptor in ATCC HL-60 cells is because of the presence of a potent serine proteinase and not because of an abnormal or absent receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号