共查询到20条相似文献,搜索用时 15 毫秒
1.
The colR4 and colR15 beta-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability.
下载免费PDF全文

The colR4 and colR15 beta 2-tubulin missense mutations for lysine-350 in Chlamydomonas reinhardtii (Lee and Huang, 1990) were originally isolated by selection for resistance to the growth inhibitory effects of colchicine. The colR4 and colR15 mutants have been found to be cross resistant to vinblastine and several classes of antimitotic herbicides, including the dinitroanilines (oryzalin, trifluralin, profluralin, and ethafluralin); the phosphoric amide amiprophos methyl; and the dimethyl propynl benzamide pronamide. Like colchicine and vinblastine, the antimitotic effects of these plant-specific herbicides have been associated with the depolymerization of microtubules. In contrast to their resistance to microtubule-depolymerizing drugs, the mutants have an increased sensitivity to taxol, a drug which enhances the polymerization and stability of microtubules. This pattern of altered sensitivity to different microtubule inhibitors was found to cosegregate and corevert with the beta-tubulin mutations providing the first genetic evidence that the in vivo herbicidal effects of the dinitroanilines, amiprophos methyl, and pronamide are related to microtubule function. Although wild-type like in their growth characteristics, the colR4 and colR15 mutants were found to have an altered pattern of microtubules containing acetylated alpha-tubulin, a posttranslational modification that has been associated with stable subsets of microtubules found in a variety of cells. Microtubules in the interphase cytoplasm and those of the intranuclear spindle of mitotic cells, which in wild-type Chlamydomonas cells do not contain acetylated alpha-tubulin, were found to be acetylated in the mutants. These data taken together suggest that the colR4 and colR15 missense mutations increase the stability of the microtubules into which the mutant beta-tubulins are incorporated and that the altered drug sensitivities of the mutants are a consequence of this enhanced microtubule stability. 相似文献
2.
We have constructed a chimeric beta-tubulin gene that places the structural gene for the tubC beta-tubulin of Aspergillus nidulans under the control of the benA beta-tubulin promoter. Introduction of either this chimeric gene or a second wild-type benA gene into a benomyl-resistant benA22 strain causes it to become benomyl sensitive, indicating that the introduced genes are functional. Analysis of the tubulin proteins synthesized in benA22 strains into which a second wild-type benA beta-tubulin gene was transformed showed that the total amount of beta-tubulin protein was the same as in the parental strain with a single benA gene. Thus the level of beta-tubulin must be regulated. This was also true of transformants carrying an extra copy of the chimeric beta-tubulin gene. The total amount of beta-tubulin was the same as in the parental strain. Two-dimensional gel analysis showed that the endogenous benA22 and the introduced chimeric tubC gene contributed equally to the total beta-tubulin pool. The fact that one-half of the benA beta-tubulin could be replaced by tubC beta-tubulin with no effect on the growth of the cells suggests that the benA and tubC beta-tubulins are functionally interchangeable. 相似文献
3.
Using Drosophila spermatogenesis as a model, we show that function of the beta-tubulin C-terminal tail (CTT) is not independent of the body of the molecule. For optimal microtubule function, the beta-tubulin CTT and body must match. beta2 is the only beta-tubulin used in meiosis and spermatid differentiation. beta1-tubulin is used in basal bodies, but beta1 cannot replace beta2. However, when beta1 is co-expressed with beta2, both beta-tubulins are equally incorporated into all microtubules, and males exhibit near wild type fertility. In contrast, co-expression of beta2beta1C and beta1beta2C, two reciprocal chimeric molecules with bodies and tails swapped, results in defects in meiosis, cytoskeletal microtubules, and axonemes; males produce few functional sperm and few or no progeny. In these experiments, all the same beta-tubulin parts are present, but unlike the co-assembled native beta-tubulins, the "trans" configuration of the co-assembled chimeras is poorly functional. Our data thus reveal essential intra-molecular interactions between the CTT and other parts of the beta-tubulin molecule, even though the CTT is a flexible surface feature of tubulin heterodimers and microtubules. In addition, we show that Drosophila sperm tail length depends on the total tubulin pool available for axoneme assembly and spermatid elongation. D. melanogaster and other Drosophila species have extraordinarily long sperm tails, the length of which is remarkably constant in wild type flies. We show that in males of experimental genotypes that express wild type tubulins but have half the amount of the normal tubulin pool size, sperm tails are substantially shorter than wild type. 相似文献
4.
A ubiquitous beta-tubulin disrupts microtubule assembly and inhibits cell proliferation 总被引:10,自引:0,他引:10
下载免费PDF全文

Vertebrate tubulin is encoded by a multigene family that produces distinct gene products, or isotypes, of both the alpha- and beta-tubulin subunits. The isotype sequences are conserved across species supporting the hypothesis that different isotypes subserve different functions. To date, however, most studies have demonstrated that tubulin isotypes are freely interchangeable and coassemble into all classes of microtubules. We now report that, in contrast to other isotypes, overexpression of a mouse class V beta-tubulin cDNA in mammalian cells produces a strong, dose-dependent disruption of microtubule organization, increased microtubule fragmentation, and a concomitant reduction in cellular microtubule polymer levels. These changes also disrupt mitotic spindle assembly and block cell proliferation. Consistent with diminished microtubule assembly, there is an increased tolerance for the microtubule stabilizing drug, paclitaxel, which is able to reverse many of the effects of class V beta-tubulin overexpression. Moreover, transfected cells selected in paclitaxel exhibit increased expression of class V beta-tubulin, indicating that this isotype is responsible for the drug resistance. The results show that class V beta-tubulin is functionally distinct from other tubulin isotypes and imparts unique properties on the microtubules into which it incorporates. 相似文献
5.
Chang JS Kim SK Kwon TK Bae SS Min DS Lee YH Kim SO Seo JK Choi JH Suh PG 《The Journal of biological chemistry》2005,280(8):6897-6905
Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) has two pleckstrin homology (PH) domains, an N-terminal domain and a split PH domain. Here we show that pull down of NIH3T3 cell extracts with PLC-gamma1 PH domain-glutathione S-transferase fusion proteins, followed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry, identified beta-tubulin as a binding protein of both PLC-gamma1 PH domains. Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of alpha- and beta-tubulin heterodimers in all eukaryotic cells. PLC-gamma1 and beta-tubulin colocalized in the perinuclear region in COS-7 cells and cotranslocated to the plasma membrane upon agonist stimulation. Membrane-targeted translocation of depolymerized tubulin by agonist stimulation was also supported by immunoprecipitation analyses. The phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolyzing activity of PLC-gamma1 was substantially increased in the presence of purified tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that beta-tubulin activates PLC-gamma1. Furthermore, indirect immunofluorescent microscopy showed that PLC-gamma1 was highly concentrated in mitotic spindle fibers, suggesting that PLC-gamma1 is involved in spindle fiber formation. The effect of PLC-gamma1 in microtubule formation was assessed by overexpression and silencing PLC-gamma1 in COS-7 cells, which resulted in altered microtubule dynamics in vivo. Cells overexpressing PLC-gamma1 showed higher microtubule densities than controls, whereas PLC-gamma1 silencing with small interfering RNAs led to decreased microtubule network densities as compared with control cells. Taken together, our results suggest that PLC-gamma1 and beta-tubulin transmodulate each other, i.e. that PLC-gamma1 modulates microtubule assembly by beta-tubulin, and beta-tubulin promotes PLC-gamma1 activity. 相似文献
6.
A key aspect of the reaction mechanism of type IB topoisomerases is the controlled unwinding of DNA supercoils while the enzyme is transiently bound to one strand of the DNA duplex via a phosphotyrosyl linkage. In this complex, the mobile segment of the bound DNA downstream from the site of cleavage must rotate around the helical axis, requiring that interactions with the enzyme must break and re-form multiple times during the course of removing supercoils. A crystal structure of variola virus type IB topoisomerase (vTopo) bound to DNA shows several positively charged side chains that interact with the downstream mobile and upstream rigid segments, suggesting that these groups may play a role in catalysis, including the processive unwinding of supercoils. We have mutated three such residues, R67, K35, and K271, to Ala and Glu and determined the energetic effects of these mutations at each point along the reaction coordinate of vTopo. R67 interacts with a phosphate group in the rigid DNA segment across from the site of DNA strand cleavage. The ~30-fold damaging effects of the R67A and R67E mutations were primarily on the phosphoryl transfer step, with little effect on enzyme-DNA binding, or the processivity of supercoil unwinding. Removal of the K35 interaction shows mutational effects similar to those of R67, even though this residue interacts with the mobile segment 3 bp from the cleavage site. The two mutations of K271, which interacts with the mobile region even further from the site of covalent linkage, show significant effects not only on phosphoryl transfer but also on downstream DNA strand positioning. Moreover, supercoil unwinding measurements indicate that the K271A and K271E mutations increase the average number of supercoils that are removed during the lifetime of the covalent complex, enhancing the processivity of supercoil unwinding. These measurements support the proposal that the processivity of supercoil unwinding can be regulated by electrostatic interactions between the enzyme and the mobile DNA phosphate backbone. 相似文献
7.
Genetic analysis of microtubule structure: a beta-tubulin mutation causes the formation of aberrant microtubules in vivo and in vitro 总被引:11,自引:6,他引:11
下载免费PDF全文

M T Fuller J H Caulton J A Hutchens T C Kaufman E C Raff 《The Journal of cell biology》1987,104(3):385-394
A recessive male sterile mutation (B2t8) that encodes a stable variant of the testis-specific beta 2-tubulin of Drosophila causes the assembly of aberrant microtubules both in vivo and in vitro. The B2t8 mutation appears to cause defects in the formation of interprotofilament bonds. In testes from homozygous mutant males, the most commonly observed aberrant structures were sheets of protofilaments curved to form an S in cross section rather than a normal, closed microtubule. These characteristic S-shaped structures appear in the meiotic spindle, in place of axonemes in differentiating spermatids, and in cytoplasmic microtubules, including those that lie next to the nucleus during nuclear elongation. Homozygous mutant males exhibit defects in chromosome movement and cytokinesis during meiosis, flagellar elongation, and nuclear shaping, indicating that the ability to form normal closed microtubules is required for each of these events. The presence of the aberrant microtubules in three architecturally different microtubule arrays demonstrates conclusively the multifunctional nature of the beta 2-tubulin gene product. Although the mutant beta 2-tubulin subunit causes assembly of aberrant microtubules in vitro and in homozygous males, in the presence of wild-type beta 2-tubulin in heterozygous males, the variant subunit coassembles with the wild-type subunit into functional sperm. 相似文献
8.
Poruchynsky MS Kim JH Nogales E Annable T Loganzo F Greenberger LM Sackett DL Fojo T 《Biochemistry》2004,43(44):13944-13954
Hemiasterlins are sponge-derived tripeptides that inhibit cell growth by depolymerizing existing microtubules and inhibiting microtubule assembly. Since hemiasterlins are poor substrates for P-glycoprotein, they are attractive candidates for cancer therapy and have been undergoing clinical trials. The basis of resistance to a synthetic analogue of hemiasterlin, HTI-286 (HTI), was examined in cell populations derived from ovarian carcinoma (A2780/1A9) cells selected in HTI-286. 1A9-HTI-resistant cells (1A9-HTI(R) series) were 57-89-fold resistant to HTI. Cross-resistance (3-186-fold) was observed to other tubulin depolymerizing drugs, with collateral sensitivity (2-14-fold) to tubulin polymerizing agents. Evaluation of the percentage of polymerized and soluble tubulin in 1A9 parental and 1A9-HTI(R) cells corroborated the HTI cytotoxicity data. At 22 degrees C or 37 degrees C, in the absence of any drug, the percentage of polymerized microtubules for each of the 1A9-HTI(R) populations was greater than that in the 1A9 parental cells, consistent with more stable microtubules. Furthermore, microtubules in the 1A9-HTI(R) populations were also more resistant to depolymerization at 4 degrees C and had more acetylated and detyrosinated (Glu-tubulin) alpha-tubulin, all characteristic of more stable microtubules. The 1A9-HTI(R) cell populations exhibited either a single nucleotide change in the M40 beta-tubulin isotype, S172A, or in two cell populations where no beta-tubulin mutation was detected, mutations in the Kalpha-1 alpha-tubulin isotype, S165P and R221H in one resistant cell population and I384V in another. Unlike reports of mutations resulting in reduced drug affinity, the experimental data and location of mutations are consistent with resistance to HTI-286 mediated by microtubule-stabilizing mutations in beta- or alpha-tubulin. 相似文献
9.
M L Gonzalez-Garay L Chang K Blade D R Menick F Cabral 《The Journal of biological chemistry》1999,274(34):23875-23882
Analysis of beta-tubulin alleles from nine paclitaxel-resistant Chinese hamster ovary cell lines revealed an unexpected cluster of mutations affecting Leu-215, Leu-217, and Leu-228. Six of the mutant alleles encode a His, Arg, or Phe substitution at Leu-215; another mutant allele has an Arg substitution at Leu-217; and the final two mutant alleles have substitutions of His or Phe at Leu-228. Using plasmids that allow tetracycline regulated expression, the L215H, L217R, and L228F mutations were introduced into a hemagglutinin antigen-tagged beta-tubulin cDNA and transfected into wild-type Chinese hamster ovary cells. In all three cases, low to moderate expression of the transfected mutant gene conferred paclitaxel resistance. Higher levels of expression caused disruption of microtubule assembly, cell cycle arrest at mitosis, and failure to proliferate. Consistent with reduced microtubule stability, cells expressing mutant hemagglutinin beta-tubulin had fewer acetylated microtubules than nonexpressing cells in the same population. These data, together with previous studies showing that the paclitaxel-resistant mutant cell lines have less stable microtubules, indicate that the leucine cluster represents an important structural motif for microtubule assembly. 相似文献
10.
11.
Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons. 总被引:1,自引:0,他引:1
下载免费PDF全文

S Audebert E Desbruyres C Gruszczynski A Koulakoff F Gros P Denoulet B Edd 《Molecular biology of the cell》1993,4(6):615-626
The relationship between microtubule dynamics and polyglutamylation of tubulin was investigated in young differentiating mouse brain neurons. Selective posttranslational labeling with [3H]glutamate and immunoblotting with a specific monoclonal antibody (GT335) enabled us to analyze polyglutamylation of both alpha and beta subunits. Nocodazole markedly inhibited incorporation of [3H]glutamate into alpha- and beta-tubulin, whereas taxol had no effect for alpha-tubulin and a stimulating effect for beta-tubulin. These results strongly suggest that microtubule polymers are the preferred substrate for polyglutamylation. Chase experiments revealed the existence of a reversal reaction that, in the case of alpha-tubulin, was not affected by microtubule drugs, suggesting that deglutamylation of this subunit can occur on both polymers and soluble tubulin. Evidence was obtained that deglutamylation of alpha-tubulin operates following two distinct rates depending on the length of the polyglutamyl chain, the distal units (4th-6th) being removed rapidly whereas the proximal ones (1st-3rd) appearing much more resistant to deglutamylation. Partition of glutamylated alpha-tubulin isoforms was also correlated with the length of the polyglutamyl chain. Forms bearing four to six units were recovered specifically in the polymeric fraction, whereas those bearing one to three units were distributed evenly between polymeric and soluble fractions. It thus appears that the slow rate component of the deglutamylation reaction offers to neurons the possibility to maintain a basal level of glutamylated alpha-tubulin in the soluble pool independently of microtubule dynamics. Finally, some differences observed in the glutamylation of alpha- and beta-tubulin suggest that distinct enzymes are involved. 相似文献
12.
Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro
Matsuda N Kitami T Suzuki T Mizuno Y Hattori N Tanaka K 《The Journal of biological chemistry》2006,281(6):3204-3209
Mutational dysfunction of PARKIN gene, which encodes a double RING finger protein and has ubiquitin ligase E3 activity, is the major cause of autosomal recessive juvenile Parkinsonism. Although many studies explored the functions of Parkin, its biochemical character is poorly understood. To address this issue, we established an E3 assay system using maltose-binding protein-fused Parkin purified from Escherichia coli. Using this recombinant Parkin, we found that not the front but the rear RING finger motif is responsible for the E3 activity of Parkin, and it catalyzes multiple monoubiquitylation. Intriguingly, for autosomal recessive juvenile Parkinsonism-causing mutations of Parkin, whereas there was loss of E3 activity in the rear RING domain, other pathogenic mutants still exhibited E3 activity equivalent to that of the wild-type Parkin. The evidence presented allows us to reconsider the function of Parkin-catalyzed ubiquitylation and to conclude that autosomal recessive juvenile Parkinsonism is not solely attributable to catalytic impairment of the E3 activity of Parkin. 相似文献
13.
pilQ Missense mutations have diverse effects on PilQ multimer formation, piliation, and pilus function in Neisseria gonorrhoeae
下载免费PDF全文

Type IV pili are required for virulence in Neisseria gonorrhoeae, as they are involved in adherence to host epithelium, twitching motility, and DNA transformation. The outer membrane secretin PilQ forms a homododecameric ring through which the pilus is proposed to be secreted. pilQ null mutants are nonpiliated, and thus, all pilus-dependent functions are eliminated. Mutagenesis was performed on the middle one-third of pilQ, and mutants with colony morphologies consistent with the colony morphology of nonpiliated or underpiliated bacteria were selected. Nineteen mutants, each with a single amino acid substitution, were isolated and displayed diverse phenotypes in terms of PilQ multimer stability, pilus expression, transformation efficiency, and host cell adherence. The 19 mutants were grouped into five phenotypic classes based on functionality. Four of the five mutant classes fit the current model of pilus functionality, which proposes that a functional pilus assembly apparatus, not necessarily full-length pili, is required for transformation, while high levels of displayed pili are required for adherence. One class, despite having an underpiliated colony morphology, expressed high levels of pili yet adhered poorly, demonstrating that pilus expression is necessary but not sufficient for adherence and indicating that PilQ may be directly involved in host cell adherence. The collection of phenotypes expressed by these mutants suggests that PilQ has an active role in pilus expression and function. 相似文献
14.
Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin 总被引:4,自引:0,他引:4
Tubulin, the major constituent protein of microtubules, is a heterodimer of alpha and beta subunits. Both alpha and beta exist in multiple isotypic forms. It is not clear if different isotypes perform different functions. In order to approach this question, we have made a monoclonal antibody specific for the beta III isotype of tubulin. This particular isotype is neuron-specific and appears to be phosphorylated near the C terminus. We have used immunoaffinity depletion chromatography to prepare tubulin lacking the beta III subunit. We find that removal of the beta III isotype results in a tubulin mixture able to assemble much more rapidly than is unfractionated tubulin when reconstituted with either of the two microtubule-associated proteins (MAPs), tau or MAP 2. Our results suggest that the different isotypes of tubulin differ from each other in their ability to polymerize into microtubules. We have also found that the anti-beta III antibody can stimulate microtubule assembly when reconstituted with tubulin and either tau or MAP 2. When reconstituted with tubulin lacking the beta III isotype, the antibody causes the tubulin to polymerize into a polymer that is a microtubule in the presence of MAP 2 and a ribbon in the presence of tau. 相似文献
15.
Wolfram Vater Hubert Müller Eberhard Unger 《Biochemical and biophysical research communications》1978,84(3):721-726
In vitro assembly of porcine brain microtubular protein to microtubules is affected by calf thymus DNA. Dependent on mass ratio of DNA/MTP microtubule formation is partly inhibited or blocked. Microtubules formed in presence of DNA are not to be distinguished from those assembled without DNA by electron microscopy. Addition of DNA to microtubules in assembly buffer causes their disassembly. 相似文献
16.
Diverse effects of L-arginine on cardiac function of rats subjected to myocardial ischemia and reperfusion in vivo 总被引:5,自引:0,他引:5
Wang X Liang F Jiao X Liu L Bai X Li M Zhi J Liu H 《Acta biochimica et biophysica Sinica》2007,39(3):201-207
In vivo administration of L-arginine at different time points during the course of myocardialischemia and reperfusion(MI/R)has been shown to differentially regulate postischemic apoptosis.Cardiacfunction is one of the most important indexes used to judge the degree of myocardial injury.The presentstudy attempted to determine whether in vivo administration of L-arginine at different stages of MI/R has adiverse influence on cardiac function of ischemic reperfused hearts and,if so,to investigate the mechanismsinvolved.Male adult rats were subjected to 30 min myocardial ischemia followed by 5 h reperfusion.Anintravenous L-arginine bolus was given either 10 min before and 50 min after reperfusion(early treatment)or3 h and 4 h after reperfusion(late treatment).Early treatment with L-arginine markedly increased the leftventricular systolic pressure(LVSP)and dP/dt_(max),and decreased myocardial nitrotyrosine content.In strictcontrast,late treatment with L-arginine resulted in a significant decrease in LVSP and dP/dt_(max)from 4 h to 5h after reperfusion,and increase in toxic peroxynitrite formation as measured by nitrotyrosine.These resultssuggest that the administration of L-arginine at different time points during the course of MI/R leads todiverse effects on cardiac dysfunction.Early supplementation decreased the nitrative stress and improvedleft ventricular function.However,late treatment with L-arginine increased the formation of peroxynitriteand aggravated cardiac functional injury. 相似文献
17.
The initial velocity of polymerization of purified beef brain tubulin has been determined at various values of pH or pD in water and in H2O-D2O mixtures. D2O was shown to inhibit both polymerization at 37 °C and depolymerization measured at 5 °C and 37 °C. The microtubules formed in D2O were indistinguishable from those formed in H2O, by electron microscope examination. In 93% D2O the pL2versus rate of polymerization curve was displaced about one unit towards higher pL values. In certain regions of the pL versus rate curve, a stimulation in the rate of polymerization by D2O is observed. The extent of polymerization at the optimum pL value was not affected by D2O. 相似文献
18.
The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization 总被引:13,自引:0,他引:13
下载免费PDF全文

Several microtubule-binding proteins including EB1, dynactin, APC, and CLIP-170 localize to the plus-ends of growing microtubules. Although these proteins can bind to microtubules independently, evidence for interactions among them has led to the hypothesis of a plus-end complex. Here we clarify the interaction between EB1 and dynactin and show that EB1 binds directly to the N-terminus of the p150(Glued) subunit. One function of a plus-end complex may be to regulate microtubule dynamics. Overexpression of either EB1 or p150(Glued) in cultured cells bundles microtubules, suggesting that each may enhance microtubule stability. The morphology of these bundles, however, differs dramatically, indicating that EB1 and dynactin may act in different ways. Disruption of the dynactin complex augments the bundling effect of EB1, suggesting that dynactin may regulate the effect of EB1 on microtubules. In vitro assays were performed to elucidate the effects of EB1 and p150(Glued) on microtubule polymerization, and they show that p150(Glued) has a potent microtubule nucleation effect, whereas EB1 has a potent elongation effect. Overall microtubule dynamics may result from a balance between the individual effects of plus-end proteins. Differences in the expression and regulation of plus-end proteins in different cell types may underlie previously noted differences in microtubule dynamics. 相似文献
19.
We introduced a threonine-to-glycine point mutation at position 143 in the "tubulin signature motif" 140Gly-Gly-Gly-Thr-Gly-Ser-Gly146 of Saccharomyces cerevisiae beta-tubulin. In an electron diffraction model of the tubulin dimer, this sequence comes close to the phosphates of a guanine nucleotide bound in the beta-tubulin exchangeable E site. Both the GTP-binding affinity and the microtubule (MT)-dependent GTPase activity of tubulin isolated from haploid tub2-T143G mutant cells were reduced by at least 15-fold, compared to tubulin isolated from control wild-type cells. The growing and shortening dynamics of MTs assembled from alphabeta:Thr143Gly-mutated dimers were also strongly suppressed, compared to control MTs. The in vitro properties of the mutated MTs (slower growing and more stable) are consistent with the effects of the tub2-T143G mutation in haploid cells. The average length of MT spindles in large-budded mutant cells was only 3.7 +/- 0.2 microm, approximately half of the size of MT arrays in large-budded wild-type cells (average length = 7.1 +/- 0.4 microm), suggesting that there is a delay in mitosis in the mutant cells. There was also a higher proportion of large-budded cells with unsegregated nuclei in mutant cultures (30% versus 12% for wild-type cells), again suggesting such a delay. The results show that beta:Thr143 of the tubulin signature motif plays an important role in GTP binding and hydrolysis by the beta-tubulin E site and support the idea that tubulins belong to a family of proteins within the GTPase superfamily that are structurally distinct from the classic GTPases, such as EF-Tu and p21(ras). The data also suggest that MT dynamics are critical for MT function in yeast cells and that spindle MT assembly and disassembly could be coordinated with other cell-cycle events by regulating beta-tubulin GTPase activity. 相似文献