共查询到20条相似文献,搜索用时 15 毫秒
1.
B Fournet Y Leroy J Montreuil J D?caro M Rovery J A van Kuik J F Vliegenthart 《European journal of biochemistry》1987,170(1-2):369-371
The glycan primary structure of the main glycopeptide fraction obtained by pronase and carboxypeptidase A digestions of porcine pancreatic lipase has been investigated by 500-MHz 1H-NMR spectroscopy and methylation analysis. The results demonstrate that the glycopeptide fraction was a mixture containing the following structures: (formula; see text) 相似文献
2.
Glycopeptides obtained from human serotransferrin by pronase digestion were separated into two fractions by affinity chromatography on Con A-Sepharose. The retarded fraction (85% of total glycopeptides) contained sialylated biantennary glycans of the N-acetyllactosaminic type, the primary structure of which has been previously determined. The non-retained fraction (15% of total glycopeptides) consisted of two isomeric triantennary glycans of the N-acetyllactosaminic type. The primary structure have been elucidated by methylation analysis and 500 MHz 1H-NMR spectroscopy. Both contain an additional NeuAc(alpha 2----3)Gal(beta 1----4)GlcNAc antenna. The latter is linked to C-4 of the (alpha 1----3) bound Man residue in 45% of the glycans in the non-retained fraction but to C-6 of the (alpha 1----6) bound Man residue, in the remaining 55% of the glycans in this fraction. 相似文献
3.
Bouyain S Silk NJ Fabini G Drickamer K 《The Journal of biological chemistry》2002,277(25):22566-22572
The genome of Drosophila melanogaster encodes several proteins that are predicted to contain Ca(2+)-dependent, C-type carbohydrate-recognition domains. The CG2958 gene encodes a protein containing 359 amino acid residues. Analysis of the CG2958 sequence suggests that it consists of an N-terminal domain found in other Drosophila proteins, a middle segment that is unique, and a C-terminal C-type carbohydrate-recognition domain. Expression studies show that the full-length protein is a tetramer formed by noncovalent association of disulfide-linked dimers that are linked through cysteine residues in the N-terminal domain. The expressed protein binds to immobilized yeast invertase through the C-terminal carbohydrate-recognition domain. Competition binding studies using monosaccharides demonstrate that CG2958 interacts specifically with fucose and mannose. Fucose binds approximately 5-fold better than mannose. Blotting studies reveal that the best glycoprotein ligands are those that contain N-linked glycans bearing alpha1,3-linked fucose residues. Binding is enhanced by the additional presence of alpha1,6-linked fucose. It has previously been proposed that labeling of the Drosophila neural system by anti-horseradish peroxidase antibodies is a result of the presence of difucosylated N-linked glycans. CG2958 is a potential endogenous receptor for such neural-specific carbohydrate epitopes. 相似文献
4.
Y Leclercq G Sawatzki J M Wieruszeski J Montreuil G Spik 《The Biochemical journal》1987,247(3):571-578
A 'serotransferrin-like' protein was purified from mouse milk. This serotransferrin cross-reacts immunologically with the serotransferrin isolated from mouse plasma and not with the mouse lactotransferrin (lactoferrin). Sugar analysis of the three transferrins, i.e. serotransferrin, milk 'serotransferrin-like' protein and lactotransferrin, revealed that the major difference between the glycan primary structure of mouse serotransferrin and those of mouse milk 'serotransferrin-like' protein and lactotransferrin concerns essentially the presence of one fucose residue in the last two proteins. For structural determination, the N-glycosidically linked glycans were released from the protein by a reductive cleavage of the oligosaccharide-protein linkage under strong alkaline conditions. The primary structure of the released oligosaccharide alditols was determined by methylation analysis and 400 MHz 1H-n.m.r. spectroscopy. The oligosaccharide alditols released from milk 'serotransferrin-like' protein and lactotransferrin were identical and were identified as disialylated biantennary glycans of the N-acetyl-lactosamine type with a fucose residue alpha-1,6-linked to the N-acetylglucosamine residue conjugated to the peptide chain and having the following primary structure: NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)[NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4)GlcNAc(beta 1-4)[Fuc(alpha 1-6)]GlcNAc(beta 1-N)Asn. The serotransferrin glycan has the same primary structure but is only partially fucosylated (10-15%). 相似文献
5.
Sparrow LG Lawrence MC Gorman JJ Strike PM Robinson CP McKern NM Ward CW 《Proteins》2008,71(1):426-439
The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility. 相似文献
6.
Aoki K Porterfield M Lee SS Dong B Nguyen K McGlamry KH Tiemeyer M 《The Journal of biological chemistry》2008,283(44):30385-30400
Appropriate glycoprotein O-glycosylation is essential for normal development and tissue function in multicellular organisms. To comprehensively assess the developmental and functional impact of altered O-glycosylation, we have extensively analyzed the non-glycosaminoglycan, O-linked glycans expressed in Drosophila embryos. Through multidimensional mass spectrometric analysis of glycans released from glycoproteins by beta-elimination, we detected novel as well as previously reported O-glycans that exhibit developmentally modulated expression. The core 1 mucin-type disaccharide (Galbeta1-3GalNAc) is the predominant glycan in the total profile. HexNAcitol, hexitol, xylosylated hexitol, and branching extension of core 1 with HexNAc (to generate core 2 glycans) were also evident following release and reduction. After Galbeta1-3GalNAc, the next most prevalent glycans were a mixture of novel, isobaric, linear, and branched forms of a glucuronyl core 1 disaccharide. Other less prevalent structures were also extended with HexA, including an O-fucose glycan. Although the expected disaccharide product of the Fringe glycosyltransferase, (GlcNAcbeta1-3)fucitol, was not detectable in whole embryos, mass spectrometry fragmentation and exoglycosidase sensitivity defined a novel glucuronyl trisaccharide as GlcNAcbeta1-3(GlcAbeta1-4)fucitol. Consistent with the spatial distribution of the Fringe function, the GlcA-extended form of the Fringe product was enriched in the dorsal portion of the wing imaginal disc. Furthermore, loss of Fringe activity reduced the prevalence of the O-Fuc trisaccharide. Therefore, O-Fuc glycans necessary for the modulation of important signaling events in Drosophila are, as in vertebrates, substrates for extension beyond the addition of a single HexNAc. 相似文献
7.
Delta (Dl) encodes a cell surface protein that mediates cell-cell interactions central to the specification of a variety of cell fates during embryonic and postembryonic development of Drosophila melanogaster. We find that the Delta protein is expressed intermittently in follicle cells and in germ-line cells during stages 1-10 of oogenesis. Furthermore, Delta expression during oogenesis can be correlated with a number of morphogenetic defects associated with sterility observed in Dl mutant females, including failure of stalk formation within the germarium and subsequent fusion of egg chambers, necrosis in germ-line cells, and multiphasic embryonic arrest of fertilized eggs. We have also identified a Dl mutation that leads to context-dependent defects in Dl function during oogenesis. Direct comparison of Delta protein expression with that of the Notch protein in the ovary reveals substantial, but incomplete, coincidence of expression patterns in space and time. We discuss possible roles for the Delta protein in cell-cell interactions required for cell fate specification processes during oogenesis in light of available developmental and histochemical data. 相似文献
8.
9.
10.
Powerful new strategies based on mass spectrometry are revolutionizing the structural analysis and profiling of glycans and glycoconjugates. We survey here the major biosynthetic pathways that underlie the biological diversity in glycobiology, with emphasis on glycoproteins, and the approaches that can be used to address the resulting heterogeneity. Included among these are derivatizations, on- and off-line chromatography, electrospray and matrix-assisted laser desorption/ionization, and a variety of dissociation methods, the recently introduced electron-based techniques being of particular interest. 相似文献
12.
We present an algorithm for counting glycan topologies of order \(n\) that improves on previously described algorithms by a factor \(n\) in both time and space. More generally, we provide such an algorithm for counting rooted or unrooted \(d\) -ary trees with labels or masses assigned to the vertices, and we give a “recipe” to estimate the asymptotic growth of the resulting sequences. We provide constants for the asymptotic growth of \(d\) -ary trees and labeled quaternary trees (glycan topologies). Finally, we show how a classical result from enumeration theory can be used to count glycan structures where edges are labeled by bond types. Our method also improves time bounds for counting alkanes. 相似文献
13.
B Coddeville A Stratil J M Wieruszeski G Strecker J Montreuil G Spik 《European journal of biochemistry》1989,186(3):583-590
Three serotransferrin variants Tf 2a, Tf 4b and Tf 5b were isolated in an homogeneous form from a preparation of homozygous horse serotransferrin Tf 0. On the basis of the results concerning molecular mass determination and the carbohydrate analysis, it is concluded that the serotransferrin variant Tf 2a contains only one glycan while variants Tf 4b and Tf 5b contain two glycans. The structure of all of the glycans has been established by combining methylation analysis, mass spectrometry and 400-MHz 1H-NMR spectroscopy. From the obtained results, it appears that the two glycans of Tf 5b variant are, like in human serotransferrin, of the N-acetyllactosaminic biantennary type, fully sialylated by two residues of N-acetylneuraminic acid (Neu5Ac; glycan type I). In contrast, in addition to this structure, two N-acetyllactosaminic biantennary isomeric structures named type II-A and type II-B sialylated by one Neu5Ac residue and one N-acetyl-4-O-acetylneuraminic acid [Neu(4,5)Ac2] residue located either at Gal6 or 6' and one N-acetyllactosaminic biantennary structure (named type III) sialylated by two residues of Neu(4,5)Ac2, were identified in variants Tf 2a and Tf 4b. These results demonstrate that in an homozygous preparation of horse serotransferrin Tf 0, the heterogeneity is dependent, on the one hand, on the nature of the neuraminic acid substituting a N-acetyllactosaminic biantennary structure and, on the other hand, on the number of glycans bound to the polypeptide chain. Moreover, the differences which exist in the molecular mass of 77.5 kDA, 80 kDa and 82 kDa for serotransferrin variants Tf 2a, Tf 4b and Tf 5b, respectively, are not completely explained by the structure and the number of the glycans suggesting that the three variants should also differ in their polypeptide chain. 相似文献
14.
The cell-mediated adaptive immune response depends upon the activation of T cells via recognition of antigen in the context of a major histocompatibility complex (MHC) molecule. Although studies have shown that alterations in T cell receptor glycosylation reduces the activation threshold, the data on MHC is far less definitive. Here, we discuss the data on MHC glycosylation and the role the glycans might play during the adaptive host response. 相似文献
15.
AMIGO-1 is the parent member of a novel family of three cell surface leucine-rich repeat (LRR) proteins. Its expression is induced by the binding of HMGB1 (high-mobility group box 1 protein) to RAGE (receptor for advanced glycation end products) on neurons. Binding of HMGB1 to RAGE is known to have a direct effect on cellular growth regulation and mobility, and AMIGO-1 directly supports growth of neuronal processes and fasciculation of neurites. In addition, the second member of the AMIGO-family, AMIGO-2, has been implicated in adhesion of tumor cells in adenocarcinoma and survival of neurons.We have determined the crystal structure of AMIGO-1 at 2.0 Å resolution, which reveals a typical cell surface LRR domain arrangement with N- and C-terminal capping domains with disulfide bridges, followed by a C2-type Ig domain. AMIGO-1 is a dimer, with the LRR regions forming the dimer interface, and sequence conservation analysis and static light-scattering measurements suggest that all three AMIGO family proteins form similar dimers. Based on the AMIGO-1 structure, we have also modeled AMIGO-2 and present small-angle X-ray scattering data on AMIGO-2 and AMIGO-3. Our mutagenesis studies show that AMIGO-1 dimerization is necessary for proper cell surface expression and thus probably for proper or stable folding in the endoplastic reticulum and for the function of the protein. Based on the data presented earlier, we also suggest that dimerization through the LRR-LRR interface is likely to be involved in cell-cell adhesion by AMIGO-1, while extensive glycosylation may have a role. 相似文献
16.
Spatial conformation of glycans and glycoproteins 总被引:8,自引:0,他引:8
J Montreuil 《Biology of the cell / under the auspices of the European Cell Biology Organization》1984,51(2):115-131
Ten years ago, we anticipated future results by building the Y-shaped molecular model of a biantennary glycan. Progressively, this structure has been refined and modified thanks to experimental data obtained by using physical methods: X-ray diffraction, electron spin resonance (EPR), nuclear magnetic resonance (NMR) including two-dimensional NMR and one-dimensional 1H-nuclear Overhauser effect (NOE) experiments, neutron scattering and hard-sphere exo-anomeric (HSEA) calculations. So, the concept evolved successively from the Y-, to the T-, the bird- and the "broken wing"-conformation, until the demonstration, that these conformers are interconvertible. The bird-conformation as well as the concept of the mobility of antennae are in a good agreement with the reactivity of lectins, including membrane lectins, by rendering accessible any specific sugar structure, and with the activity of glycosyltransferases by making reachable the substitutable hydroxyl groups even in the case of pentaantennary structures. Along this line, we know now that the tetraantennary glycans adopt an "umbrella conformation" in which the four antennae are disposed parallely to the protein surface and act as protective shields. So could be explained the resistance towards proteases and the weak antigenicity of numerous glycoproteins as well as the peculiar behaviour and resistance of metastatic cancerous cells since it has been recently demonstrated that membrane glycoproteins and fibronectin of this kind of cells are significantly enriched in tri- and tetraantennary glycans. 相似文献
17.
Spectrophotometric analysis and dot-hybridization have shown that amylose forms complexes with polypyrimidines (poly dC), while polyuronides form complexes with polypurines (poly dA). In addition, the formation of complexes genomic thymus DNA-hyaluronic acid has been observed. A certain role in the mechanism of NA-polysaccharide interactions can be played by the links between purines and the carboxylic group of hexuronic acid residue, as well as between pyrimidines and the hydroxymethyl group of hexose residue. The quantum-chemical calculations showed that, between nitric bases of DNA and the carboxyl groups of hexuronic acids or the hydroxymethyl group of hexose, hydrogen bonds can be formed the energy of which is comparable with that in the complementary AT and CG pairs. The strength of these bonds is unequal: carboxyl groups form stronger hydrogen bonds with purines and weaker bonds with pyrimidines. The hydroxymethyl group, on the contrary, forms stronger hydrogen bonds with pyrimidines and weaker bonds with purines. The quantum-chemical modeling shows that, in the complementary pairs purin-uronic acid and pyrimidine-hexose, hydrogen bonds are produced that form a binary chain nucleic acid-polysaccharide. The data obtained suggest the existence of template synthesis of GAG polysaccharide fragments with the participation of NA. 相似文献
18.
19.
Drosophila melanogaster is an important model organism in evolutionary genetics, yet little is known about the population structure and the demographic history of this species within sub-Saharan Africa, which is thought to contain its ancestral range. We surveyed nucleotide variation at four 1-kb fragments in 240 individual lines representing 21 sub-Saharan and 4 Palearctic population samples of D. melanogaster. In agreement with recent studies, we find a small but significant level of genetic differentiation within sub-Saharan Africa. A clear geographic pattern is observed, with eastern and western African populations composing two genetically distinct groups. This pattern may have resulted from a relatively recent establishment of D. melanogaster in western Africa. Eastern populations show greater evidence for long-term stability, consistent with the hypothesis that eastern Africa contains the ancestral range of the species. Three sub-Saharan populations show evidence for cosmopolitan introgression. Apart from those cases, the closest relationships between Palearctic and sub-Saharan populations involve a sample from the rift zone (Uganda), suggesting that the progenitors of Palearctic D. melanogaster might have come from this region. Finally, we find a large excess of singleton polymorphisms in the full data set, which is best explained by a combination of population growth and purifying selection. 相似文献
20.
J Mazurier M Dauchez G Vergoten J Montreuil G Spik 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1991,313(1):7-14
On the basis of experimental data and of computer calculations using the Tripos 5.3 force field in order to examine the three-dimensional structures which are sterically feasible and the conformations which are energetically the most favourable, we have designed a program of molecular modelling of biantennary glycans of the N-acetyllactosaminic type (complex type). We demonstrate that, in absence of any interaction with the protein, a high number of glycan conformations exists which can be classified into five basic conformations, four of which have already been described. In fact, in addition to the Y-, T-, "bird" and "broken-wing" conformations, a "back-folded wing" conformation is energetically feasible. In contrast, the glycan linked to the protein is immobilized into only one conformation: the "broken-wing" conformation. Forming a bridge between the two lobes of the peptide chain, it probably contributes to the maintenance of the protein in a biologically active conformation. 相似文献