首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Boiteux  J Pierre  J Laval 《Biochimie》1985,67(3-4):371-376
Ultraviolet irradiation alters the template properties of poly(dC) when replicated by Escherichia coli DNA polymerase I. These effects are due to base modifications. Some of them are identified as apurinic/apyrimidinic sites (AP-sites) by their sensitivity to AP-endonuclease B purified from Micrococcus luteus, and their template properties. The rate of formation of AP-sites in poly(dC) is estimated at 3 X 10(-7) site per nucleotide per J.m-2. Exposure of supercoiled or relaxed pBR322 DNA to UV light results also in the formation of sites sensitive to AP-endonuclease B. In this case, the rate of formation of AP-sites is the same in relaxed or supercoiled DNA: 0.3 X 10(-7) site per nucleotide per J.m-2. The apyrimidinic sites are generated through the processing of an ultraviolet induced primary lesion. We suggest that this lesion is cytosine hydrate by its rate of decay and preferential formation in single stranded DNA. Our results suggest that AP-sites might be a minor pathway leading to UV-induced mutagenesis.  相似文献   

2.
The inhibition of highly purified herpes simplex virus (HSV)-induced and host cell DNA polymerases by the triphosphate form of 9-(2-hydroxyethoxymethyl)guanine (acyclovir; acycloguanosine) was examined. Acyclovir triphosphate (acyclo-GTP) competitively inhibited the incorporation of dGMP into DNA, catalyzed by HSV DNA polymerase; apparent Km and Ki values of dGTP and acyclo-GTP were 0.15 microM and 0.003 microM, respectively. HeLa DNA polymerase alpha was also competitively inhibited; Km and Ki values of dGTP and acyclo-GTP were 1.2 microM and 0.18 microM, respectively. In contrast, HeLa DNA polymerase beta was insensitive to the analogue. The "limited" DNA synthesis observed when dGTP was omitted from HSV or alpha DNA polymerase reactions was inhibited by acyclo-GTP in a concentration-dependent manner. Prior incubation of activated DNA, acyclo-GTP, and DNA polymerase (alpha or HSV resulted in a marked decrease in the utilization of the primer-template in subsequent DNA polymerase reactions. This decreased ability of preincubated primer-templates to support DNA synthesis was dependent on acyclo-GTP, enzyme concentration, and the time of prior incubation. Acyclo-GMP-terminated DNA was found to inhibit HSV DNA polymerase-catalyzed DNA synthesis. Kinetic experiments with variable concentrations of activated DNA and fixed concentrations of acyclo-GMP-terminated DNA revealed a noncompetitive inhibition of HSV-1 DNA polymerase. The apparent Km of 3'-hydroxyl termini was 1.1 X 10(-7) M, the Kii and Kis of acyclo-GMP termini in activated DNA were 8.8 X 10(-8) M and 2.1 X 10(-9) M, respectively. Finally, 14C-labeled acyclo-GMP residues incorporated into activated DNA by HSV-1 DNA polymerase could not be excised by the polymerase-associated 3',5'-exonuclease activity.  相似文献   

3.
The triphosphate of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) competitively inhibits incorporation of dGTP into DNA catalyzed by DNA polymerases specified by both type 1 and type 2 herpes simplex virus. K1 values were estimated to be 33 nM for type 1 and 46 nM for type 2-specified DNA polymerase. DHPG acted as an alternate substrate to dGTP for the virus-specified DNA polymerase. Incorporation of DHPG into DNA resulted in the slowing down of the rate of DNA synthesis. The position of DHPG incorporation was analyzed, and it was found to enter both internal and terminal linkages. DNA which contained DHPG at termini was found to competitively inhibit utilization of activated DNA as primer. DNA polymerase alpha and DNA polymerases from several phosphonoformic acid-resistant herpes simplex virus type 1 strains were examined for sensitivity to 9-(1,3-dihydroxy-2-propoxymethyl)guanine triphosphate. A lack of correlation between the in vivo sensitivities of the virus mutants and the K1 values of the DNA polymerases was noted.  相似文献   

4.
Rad17, Rad1, Hus1, and Rad9 are key participants in checkpoint signaling pathways that block cell cycle progression in response to genotoxins. Biochemical and molecular modeling data predict that Rad9, Hus1, and Rad1 form a heterotrimeric complex, dubbed 9-1-1, which is loaded onto chromatin by a complex of Rad17 and the four small replication factor C (RFC) subunits (Rad17-RFC) in response to DNA damage. It is unclear what checkpoint proteins or checkpoint signaling events regulate the association of the 9-1-1 complex with DNA. Here we show that genotoxin-induced chromatin binding of 9-1-1 does not require the Rad9-inducible phosphorylation site (Ser-272). Although we found that Rad9 undergoes an additional phosphatidylinositol 3-kinase-related kinase (PIKK)-dependent posttranslational modification, we also show that genotoxin-triggered 9-1-1 chromatin binding does not depend on the catalytic activity of the PIKKs ataxia telangiectasia-mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), or DNA-PK. Additionally, 9-1-1 chromatin binding does not require DNA replication, suggesting that the complex can be loaded onto DNA in response to DNA structures other than stalled DNA replication forks. Collectively, these studies demonstrate that 9-1-1 chromatin binding is a proximal event in the checkpoint signaling cascade.  相似文献   

5.
Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex   总被引:9,自引:0,他引:9  
Genotoxic stress activates checkpoint signaling pathways that block cell cycle progression, trigger apoptosis, and regulate DNA repair. Studies in yeast and humans have shown that Rad9, Hus1, Rad1, and Rad17 play key roles in checkpoint activation. Three of these proteins-Rad9, Hus1, and Rad1-interact in a heterotrimeric complex (dubbed the 9-1-1 complex), which resembles a PCNA-like sliding clamp, whereas Rad17 is part of a clamp-loading complex that is related to the PCNA clamp loader, replication factor-C (RFC). In response to genotoxic damage, the 9-1-1 complex is loaded around DNA by the Rad17-containing clamp loader. The DNA-bound 9-1-1 complex then facilitates ATR-mediated phosphorylation and activation of Chk1, a protein kinase that regulates S-phase progression, G2/M arrest, and replication fork stabilization. In addition to its role in checkpoint activation, accumulating evidence suggests that the 9-1-1 complex also participates in DNA repair. Taken together, these findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.  相似文献   

6.
7.
R Male  V M Fosse    K Kleppe 《Nucleic acids research》1982,10(20):6305-6318
The ability of different polyamines to catalyze hydrolysis of phosphodiester linkages in apurinic and apyrimidinic (AP) sites has been investigated in supercoiled, relaxed and denatured DNA, and also in core and chromatosome particles. The rate constants for the hydrolysis in the DNAs have been determined. In general the order of effectiveness of the polyamines were: spermine greater than spermidine greater than putrescine greater than cadaverine. A 9 fold difference in rate constants was found between spermine and cadaverine. No difference in the rate of hydrolysis was seen between AP-sites in supercoiled and relaxed DNAs, whereas the rate for the single-stranded DNA and DNA in core and chromatosome particles was only half of that in the double-stranded DNA. All AP-sites in both free DNA and DNA-histone particles were hydrolyzed in the presence of polyamines. For all polyamines, with the exception of spermine, increasing concentration of both Mg++ and salts such as KCl both led to a large decrease in the rate of polyamine-induced hydrolysis of AP-sites. The rate of hydrolysis increased markedly with increasing pH in the pH range pH 6 - pH 11.  相似文献   

8.
We have prepared a series of a tailor-made molecules that recognize and cleave DNA at apurinic sites in vitro. These molecules incorporate in their structure different units designed for specific function: an intercalator for DNA binding, an nucleic base for abasic site recognition and a linking chain of variable length and nature (including amino and/or amido functions). The cleavage efficiency of the molecules can be modulated by varying successively the nature of the intercalating agent, the nucleic base and the chain. All molecules bind to native calf thymus DNA with binding constants ranging from 104 to 106 M?1. Their cleavage activity was determined on plasmid DNA (pBR 322) containing 1.8 AP-sites per DNA-molecule. The minimum requirements for cleavage are the presence of the three units, the intercalator, the nucleic base and at least one amino function in the chain. The most efficient molecules cleaved plasmid DNA at nanomolar concentrations. Enzymatic experiments on the termini generated after cleavage of AP-DNA suggest a strand break induced by a β-elimination reaction. In order to get insight into the mode of action (efficiency, selectivity, interaction), we have used synthetic oligonucleotides containing either a true abasic site at a determined position to analyse the cleavage parameters of the synthetic molecules by HPLC or a chemically stable along (tetrahydrofuran) of the abasic site for high field 1H NMR spectrometry and footprinting experiments. All results are consistent with a β-elimination mechanism in which each constituent of the molecule exerts a specific function as indicated in the scheme: DNA targeting, abasic site nucleases and can be used advantageously as substitutes for the natural enzyme for in vitro cleavage of AP-sites containing DNA.  相似文献   

9.
Quinazolines - 1,3-benzodiazines are biological active compounds, which are used in the phamaceutical industry, in agriculture and in the medicine. As documented in the literature, many derivatives demonstrated anticancer activity and they act as multitarget agents. 3-(5-Nitro-2-thienyl)-9-chloro-5-morpholin-4-yl[1,2,4]triazolo[4,3-c] quinazoline (NTCHMTQ) - a new synthetically prepared quinazoline derivative was the most effective derivative in our primary cytotoxic screening. In this study, we evaluated cytotoxic/antiproliferative activity of NTCHMTQ using human tumor cell line HeLa. Possible interaction of 3-(5-nitro-2-thienyl)-9-chloro-5-morpholin-4-yl[1,2,4]triazolo[4,3-c] quinazoline with calf thymus DNA was tested by the DNA - modified screen - printed electrode. Quinazoline derivative acted cytotoxically on tumor cell line HeLa. The IC(100) value was 10 microg/ml. The IC(50) values was found to be less than 4 microg/ml, a limit put forward by the National Cancer Institute (NCI) for classification of he compound as a potential anticancer drug. Quinazoline at micromolar concentrations induced morphological changes and necrosis of HeLa cells. Using the DNA based electrochemical biosensor, we have not found damage to DNA under in vitro conditions at an incubation of the biosensor in mixture with quinazoline.  相似文献   

10.
Genetic studies have previously demonstrated that the Saccharomyces cerevisiae CDC9 gene product, which is functionally homologous to mammalian DNA ligase I, is required for DNA replication and is also involved in DNA repair and genetic recombination. In the present study we have purified the yeast enzyme. When measured under denaturing conditions, Cdc9 protein has a polypeptide molecular mass of 87 kDa. The native form of the enzyme is an 80-kDa asymmetric monomer. Both estimates are in good agreement with the M(r) = 84,406 predicted from the translated sequence of the CDC9 gene. Cdc9 DNA ligase acts via the same basic reaction mechanism employed by all known ATP-dependent DNA ligases. The catalytic functions reside in a 70-kDa C-terminal domain that is conserved in mammalian DNA ligase I and in Cdc17 DNA ligase from Schizosaccharomyces pombe. The ATP analog ATP alpha S inhibits the ligation reaction, although Cdc9 protein does form an enzyme-thioadenylate intermediate. Since Cdc9 DNA ligase exhibited the same substrate specificity as mammalian DNA ligase I, this enzyme can be considered to be the DNA ligase I of S. cerevisiae. There is genetic evidence suggesting that DNA ligase may be directly involved in error-prone DNA repair. We examined the ability of Cdc9 DNA ligase to join nicks with mismatches at the termini. Mismatches at the 5' termini of nicks had very little effect on ligation, whereas mismatches opposite a purine at 3' termini inhibited DNA ligation. The joining of DNA molecules with mismatched termini by DNA ligase may be responsible for the generation of mutations.  相似文献   

11.
9-(3-Pyridylmethyl)-9-deazaguanine (BCX-34), a new purine nucleoside phosphorylase inhibitor, has selective immunosuppressive activity with potential therapeutic value in T-cell-mediated diseases. We now report a sensitive, specific and reproducible method for measurement of 9-(3-pyridylmethyl)-9-deazagunanine in biological fluids using high-performance liquid chromatography (HPLC). 9-(3-Pyridylmethyl)-9-deazagunanine was extracted from plasma using perchloric acid precipitation followed by passage through Sep-Pak C18 cartridges (average extraction efficiency, 64.6%). Standard curves were linear over the range of interest (28–1120 ng/ml in plasma and 200–4000 ng/ml in urine, r2>0.999). Within-day and between-day coefficients of variation were less than 8%. The limit of quantitation was 28 ng/ml in plasma and 200 ng/ml in urine. This HPLC method should be useful in future clinical studies with this drug.  相似文献   

12.
Seki M  Wood RD 《DNA Repair》2008,7(1):119-127
DNA polymerase theta (pol theta) is a nuclear A-family DNA polymerase encoded by the POLQ gene in vertebrate cells. The biochemical properties of pol theta and of Polq-defective mice have suggested that pol theta participates in DNA damage tolerance. For example, pol theta was previously found to be proficient not only in incorporation of a nucleotide opposite a thymine glycol or an abasic site, but also extends a polynucleotide chain efficiently from the base opposite the lesion. We carried out experiments to determine whether this ability to extend from non-standard termini is a more general property of the enzyme. Pol theta extended relatively efficiently from matched termini as well as termini with A:G, A:T and A:C mismatches, with less descrimination than a well-studied A-family DNA polymerase, exonuclease-free pol I from E. coli. Although pol theta was unable to, by itself, bypass a cyclobutane pyrimidine dimer or a (6-4) photoproduct, it could perform some extension from primers with bases placed across from these lesions. When pol theta was combined with DNA polymerase iota, an enzyme that can insert a base opposite a UV-induced (6-4) photoproduct, complete bypass of a (6-4) photoproduct was possible. These data show that in addition to its ability to insert nucleotides opposite some DNA lesions, pol theta is proficient at extension of unpaired termini. These results show the potential of pol theta to act as an extender after incorporation of nucleotides by other DNA polymerases, and aid in understanding the role of pol theta in somatic mutagenesis and genome instability.  相似文献   

13.
Bacterial AlkB and three human AlkB homologues (ABH1, ABH2, and ABH3) are Fe2+/2-oxoglutarate-dependent oxygenases that directly repair alkylation-damaged DNA. Here, we show that ABH1 unexpectedly has a second activity, cleaving DNA at abasic (AP) sites such as those arising spontaneously from alkylation-dependent depurination reactions. The DNA cleavage activity of ABH1 does not require added Fe2+ or 2-oxoglutarate, is not inhibited by EDTA, and is unaffected by mutation of the putative metal-binding residues, indicating that this activity arises from an active site distinct from that used for demethylation. AP-specific DNA cleavage was shown to occur by a lyase mechanism, rather than by hydrolysis, with the enzyme remaining associated with the DNA product. ABH1 can cleave at closely spaced AP-sites on opposite DNA strands yielding double-strand breaks in vitro and this reaction may relate to the physiological role of this unexpected AP lyase activity.  相似文献   

14.
Several ring-substituted derivatives of previously studied MDR inhibitors 2-(3,4-dimethoxyphenyl)-5-(9-fluorenylamino)-2-(methylethyl)pentanenitrile and 2-(3,4-dimethoxyphenyl)-5-[(9-fluorenyl)-N-methylamino]-2-(methylethyl)pentanenitrile have been synthesised and studied with the aim of optimising activity and selectivity. The results show that MDR inhibition is scarcely sensitive to modulation of the electronic properties of the fluorene ring. Even if dramatic improvement was not obtained, one of the compounds (2) showed improved potency and selectivity with respect to the leads and appears to be a better candidate for drug development.  相似文献   

15.
A Wong  C H Huang  S T Crooke 《Biochemistry》1984,23(13):2939-2945
We have demonstrated that 4'-(9-acridinyl-amino)methanesulfon-m-anisidide (mAMSA), in the presence of Cu(II) ion, causes the breakage of plasmid pDPT275 and pBR322 superhelical form I DNA. In neutral pH, the degradative product was nicked, relaxed form II DNA, resulting from single-stranded DNA breakage. The extent of DNA breakage was both mAMSA concentration and Cu(II) concentration dependent. DNA breakage increased with increasing time of drug treatment. The mAMSA-Cu(II)-induced DNA breakage varied with pH values and also with the nature of the buffer systems. In both Tris-HCl and borate buffers the extent of DNA breakage increased with increasing pH. In Tris-HCl buffer (pH 7-9), only single-strand breaks were obtained, whereas in borate buffer (pH 9-10.5), linear form III DNA was obtained. At equivalent pH, the optimum buffer was borate. No breakage was observed at pH values below 6. The interaction of Cu(II) with mAMSA was examined by using absorption and fluorescence spectroscopies. Interaction of Cu(II) with mAMSA was characterized by a decrease in the absorption at 435 and 420 nm with a simultaneous increase at 330 nm. A highly fluorescent product was obtained upon reacting mAMSA with Cu(II), with an emission spectrum (excitation at 400 nm) showing a doublet at 430 and 450 nm and a shoulder around 480 nm. The spectral changes are also dependent similarly on the pH and the nature of buffer. Other divalent metal ions such as Co(II), Cd(II), Ni(II), and Zn(II) do not induce DNA breakage or spectral changes. The oAMSA isomer, which has no antitumor activity, is less effective in inducing DNA breakage than the mAMSA.  相似文献   

16.
Complementation analysis of the pso9-1 yeast mutant strain sensitive to photoactivated mono- and bifunctional psoralens, UV-light 254 nm, and nitrosoguanidine, with pso1 to pso8 mutants, confirmed that it contains a novel pso mutation. Molecular cloning via the reverse genetics complementation approach using a yeast genomic library suggested pso9-1 to be a mutant allele of the DNA damage checkpoint control gene MEC3. Non-complementation of several sensitivity phenotypes in pso9-1/mec3Delta diploids confirmed allelism. The pso9-1 mutant allele contains a -1 frameshift mutation (deletion of one A) at nucleotide position 802 (802delA), resulting in nine different amino acid residues from that point and a premature termination. This mutation affected the binding properties of Pso9-1p, abolishing its interactions with both Rad17p and Ddc1p. Further interaction assays employing mec3 constructions lacking the last 25 and 75 amino acid carboxyl termini were also not able to maintain stable interactions. Moreover, the pso9-1 mutant strain could no longer sense DNA damage since it continued in the cell cycle after 8-MOP + UVA treatment. Taken together, these observations allowed us to propose a model for checkpoint activation generated by photo-induced adducts.  相似文献   

17.
Single-stranded DNA (ssDNA) at DNA ends is an important regulator of the DNA damage response. Resection, the generation of ssDNA, affects DNA damage checkpoint activation, DNA repair pathway choice, ssDNA-associated mutation and replication fork stability. In eukaryotes, extensive DNA resection requires the nuclease Exo1 and nuclease/helicase pair: Dna2 and Sgs1BLM. How Exo1 and Dna2-Sgs1BLM coordinate during resection remains poorly understood. The DNA damage checkpoint clamp (the 9-1-1 complex) has been reported to play an important role in stimulating resection but the exact mechanism remains unclear. Here we show that the human 9-1-1 complex enhances the cleavage of DNA by both DNA2 and EXO1 in vitro, showing that the resection-stimulatory role of the 9-1-1 complex is direct. We also show that in Saccharomyces cerevisiae, the 9-1-1 complex promotes both Dna2-Sgs1 and Exo1-dependent resection in response to uncapped telomeres. Our results suggest that the 9-1-1 complex facilitates resection by recruiting both Dna2-Sgs1 and Exo1 to sites of resection. This activity of the 9-1-1 complex in supporting resection is strongly inhibited by the checkpoint adaptor Rad953BP1. Our results provide important mechanistic insights into how DNA resection is regulated by checkpoint proteins and have implications for genome stability in eukaryotes.  相似文献   

18.
Mutageneous activity of a highly-efficient and low toxic antiherpes drug 9-(2-hydroxyethoxymethyl) guanine (Acyclovir) was first shown. The method for the detection of micronuclear polychromatic erythrocytes in mice bone marrow was used. A dose-dependent cytogenetic effect was noted in the dose range of acyclovir of 5-600 mg/kg. The results obtained permitted designation of this preparation to class "B" in accordance with the classification of potential mutagenic danger, adopted for the ready-made drug forms in the USSR. According to the type of cytotoxic effect on hemopoiesis, acyclovir may be referred to antimetabolites of nucleic acids.  相似文献   

19.
The effect of acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein-Barr virus (EBV) DNA replication in the lymphoblastoid cell lines P3HR-1 and Raji is reported. Acyclovir at a concentration of 100 microM completely inhibited EBV DNA synthesis in superinfected Raji cells, but did not inhibit DNA synthesis in mock-infected cells. The number of EBV genome equivalents per cell in the virus-producing cell line P3HR-1 was significantly reduced by acyclovir, whereas the number of latent EBV genomes in Raji cells was not affected by the drug. In situ cytohybridization performed on untreated P3HR-1 cultures revealed the presence of relatively large amounts of EBV DNA in 15 to 20% of the cells. After a 100 microM drug treatment, no P3HR-1 cells contained levels of EBV DNA detectable by in situ cytohybridization. Indirect immunofluorescence studies demonstrated that during treatment with 100 microM acyclovir for 7 days, the percentage of P3HR-1 cells expressing viral capsid antigen was reduced. The EBV DNA remaining in P3HR-1 cells after treatment with 100 microM acyclovir (approximately 14 genomes per cell) had the properties of covalently closed circular DNA with an average molecular weight of 108 X 10(6), as determined by contour length measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号