首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is known that chromosomes occupy non-random positions in the cell nucleus. However, it is not clear to what extent their nuclear positions, together with their neighborhood, are conserved in daughter cells. To address specific aspects of this problem, we used the model of the chromosomes carrying ribosomal genes that are organized in clusters termed Nucleolus Organizer Regions (NORs). We compared the association of chosen NOR-bearing chromosomes (NOR-chromosomes) with nucleoli, as well as the numbers of nucleoli, in the pairs of daughter cells, and established how frequently the daughter cells had equal numbers of the homologs of certain NOR-chromosomes associated with individual nucleoli. The daughter cells typically had different numbers of nucleoli. At the same time, using immuno-FISH with probes for chromosomes 14 and 15 in HeLa cells, we found that the cell pairs with identical combinations appeared significantly more frequently than predicted by the random model. Thus, although the total number of chromosomes associated with nucleoli is variable, our data indicate that the position of the NOR-bearing chromosomes in relation to nucleoli is partly conserved through mitosis.  相似文献   

3.
How the nucleolus is segregated during mitosis is poorly understood and occurs by very different mechanisms during closed and open mitosis. Here we report a new mechanism of nucleolar segregation involving removal of the nucleolar-organizing regions (NORs) from nucleoli during Aspergillus nidulans mitosis. This involves a double nuclear envelope (NE) restriction which generates three NE-associated structures, two daughter nuclei (containing the NORs), and the nucleolus. Therefore, a remnant nucleolar structure can exist in the cytoplasm without NORs. In G1, this parental cytoplasmic nucleolus undergoes sequential disassembly releasing nucleolar proteins to the cytoplasm as nucleoli concomitantly reform in daughter nuclei. By depolymerizing microtubules and mutating spindle assembly checkpoint function, we demonstrate that a cycle of nucleolar “segregation” can occur without a spindle in a process termed spindle-independent mitosis (SIM). During SIM physical separation of the NOR from the nucleolus occurs, and NE modifications promote expulsion of the nucleolus to the cytoplasm. Subsequently, the cytoplasmic nucleolus is disassembled and rebuilt at a new site around the nuclear NOR. The data demonstrate the existence of a mitotic machinery for nucleolar segregation that is normally integrated with mitotic spindle formation but that can function without it.  相似文献   

4.
J M Lucocq  G Warren 《The EMBO journal》1987,6(11):3239-3246
Osmium impregnation was used to determine the number of Golgi apparatus in both interphase and mitotic HeLa cells. The number was found to increase substantially during mitosis to the point where random partitioning alone would explain the nearly equal numbers found in each daughter cell.  相似文献   

5.
Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53‐mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53‐mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non‐centrosomal protein SMC5 is also TP53‐dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.  相似文献   

6.
7.
Tse HT  Weaver WM  Di Carlo D 《PloS one》2012,7(6):e38986
As the microenvironment of a cell changes, associated mechanical cues may lead to changes in biochemical signaling and inherently mechanical processes such as mitosis. Here we explore the effects of confined mechanical environments on cellular responses during mitosis. Previously, effects of mechanical confinement have been difficult to optically observe in three-dimensional and in vivo systems. To address this challenge, we present a novel microfluidic perfusion culture system that allows controllable variation in the level of confinement in a single axis allowing observation of cell growth and division at the single-cell level. The device is capable of creating precise confinement conditions in the vertical direction varying from high (3 μm) to low (7 μm) confinement while also varying the substrate stiffness (E = 130 kPa and 1 MPa). The Human cervical carcinoma (HeLa) model with a known 3N+ karyotype was used for this study. For this cell line, we observe that mechanically confined cell cycles resulted in stressed cell divisions: (i) delayed mitosis, (ii) multi- daughter mitosis events (from 3 up to 5 daughter cells), (iii) unevenly sized daughter cells, and (iv) induction of cell death. In the highest confined conditions, the frequency of divisions producing more than two progeny was increased an astounding 50-fold from unconfined environments, representing about one half of all successful mitotic events. Notably, the majority of daughter cells resulting from multipolar divisions were viable after cytokinesis and, perhaps suggesting another regulatory checkpoint in the cell cycle, were in some cases observed to re-fuse with neighboring cells post-cytokinesis. The higher instances of abnormal mitosis that we report in confined mechanically stiff spaces, may lead to increased rates of abnormal, viable, cells in the population. This work provides support to a hypothesis that environmental mechanical cues influences structural mechanisms of mitosis such as geometric orientation of the mitotic plane or planes.  相似文献   

8.
Organelles are inherited to daughter cells beyond dynamic changes of the membrane structure during mitosis. Mitochondria are dynamic entities, frequently dividing and fusing with each other, during which dynamin-related GTPase Drp1 is required for the fission reaction. In this study, we analyzed mitochondrial dynamics in mitotic mammalian cells. Although mitochondria in interphase HeLa cells are long tubular network structures, they are fragmented in early mitotic phase, and the filamentous network structures are subsequently reformed in the daughter cells. In marked contrast, tubular mitochondrial structures are maintained during mitosis in Drp1 knockdown cells, indicating that the mitochondrial fragmentation in mitosis requires mitochondrial fission by Drp1. Drp1 was specifically phosphorylated in mitosis by Cdk1/cyclin B on Ser-585. Exogenous expression of unphosphorylated mutant Drp1S585A led to reduced mitotic mitochondrial fragmentation. These results suggest that phosphorylation of Drp1 on Ser-585 promotes mitochondrial fission in mitotic cells.  相似文献   

9.
BACKGROUND: Some of the mechanisms underlying cell division and partitioning of the cellular components into the daughter cells are well known. Within the endomembrane system, there is a general cessation of membrane traffic, including endocytosis and endosome fusion, at the onset of mitosis. However, the fate of endosomes and lysosomes during mitosis has been less well studied. RESULTS: Using video and confocal microscopy of living cells, we show here that endosomes and lysosomes remain intact and separate during mitosis. The segregation into daughter cells takes place by coordinated movements, and during cytokinesis, these organelles accumulate in the vicinity of the microtubule organization center. However, partitioning into daughter cells is not more accurate than a calculated stochastic distribution, despite the apparent order to the process. CONCLUSION: We conclude that partitioning of endosomes and lysosomes is an ordered, yet imprecise, process, and that the organelle copy number is maintained by the daughter cells.  相似文献   

10.
Centromeric protein-E (CENP-E) is a kinesin-like motor protein required for chromosome congression at prometaphase. Functional perturbation of CENP-E by various methods results in a consistent phenotype, i.e., unaligned chromosomes during mitosis. One unresolved question from previous studies is whether cells complete mitosis or sustain mitotic arrest in the presence of unaligned chromosomes. Using RNA interference and video-microscopy, we analyzed the dynamic process of mitotic progression of HeLa(H2B)-GFP cells lacking CENP-E. Our results demonstrate that these cells initiated anaphase after a delayed mitotic progression due to the presence of unaligned chromosomes. In some dividing cells, unaligned chromosomes are present during anaphase, causing nondisjunction of some sister chromatids producing aneuploid daughter cells. Unlike in Xenopus extract, the loss of CENP-E in HeLa cells does not impair gross checkpoint activation because cells were arrested in mitosis in response to microtubule-interfering agents. However, the lack of CENP-E at kinetochores reduced the hyperphosphorylation of BubR1 checkpoint protein during mitosis, which may explain the loss of sensitivity of a cell to a few unaligned chromosomes in the absence of CENP-E. We also found that presynchronization with nocodazole sensitizes cells to the depletion of CENP-E, leading to more unaligned chromosomes, longer arrest, and cell death.  相似文献   

11.
12.
In vitro assays identified the Golgi peripheral protein GRASP65 as a Golgi stacking factor that links adjacent Golgi cisternae by forming mitotically regulated trans‐oligomers. These conclusions, however, require further confirmation in the cell. In this study, we showed that the first 112 amino acids at the N‐terminus (including the first PDZ domain, PDZ1) of the protein are sufficient for oligomerization. Systematic electron microscopic analysis showed that the expression of non‐regulatable GRASP65 mutants in HeLa cells enhanced Golgi stacking in interphase and inhibited Golgi fragmentation during mitosis. Depletion of GRASP65 by small interference RNA (siRNA) reduced the number of cisternae in the Golgi stacks; this reduction was rescued by expressing exogenous GRASP65. These results provided evidence and a molecular mechanism by which GRASP65 stacks Golgi cisternal membranes. Further experiments revealed that inhibition of mitotic Golgi disassembly by expressing non‐regulatable GRASP65 mutants did not affect equal partitioning of the Golgi membranes into the daughter cells. However, it delayed mitotic entry and suppressed cell growth; this effect was diminished by dispersing the Golgi apparatus with Brefeldin A treatment prior to mitosis, suggesting that Golgi disassembly at the onset of mitosis plays a role in cell cycle progression.  相似文献   

13.
Silver staining of nucleoli reveals argyrophilic proteins associated with nucleolar organizer region (Ag-NOR) proteins. Argyrophilic components appear as dots about 1 micron in diameter dispersed throughout the nucleolus (Ag-NOR dots). The count of Ag-NOR dots is a useful index for improving the cancer diagnosis and determination of prognosis. Here we describe software developed on a medium-cost image analyzer in order to evaluate the mean area of NORs and their number relative to an internal reference, the number and areas of clusters of NORs and the area of the nucleus. Statistical analysis of the data was performed during counting. The first application concerned counting NOR dots during mitosis in cell imprints; those counts were 2.3, 15.3 and 55.56 for the metaphase, telophase and interphase, respectively (relative to unitary dots of metaphase cells). In the second application we demonstrated a significant difference in NOR numbers between two groups of prostatic cancers with good and poor prognoses (6.05 +/- 2.79 SD and 7.96 +/- 3.01, respectively; with Student's t test, = 1.999; P = .05).  相似文献   

14.
Changes in protein tyrosine phosphorylation are known to be important for regulating cell cycle progression. With the aim of identifying new proteins involved in the regulation of mitosis, we used an antibody against phosphotyrosine to analyze proteins from synchronized human and hamster cells. At least seven proteins were found that displayed mitosis-specific tyrosine phosphorylation in HeLa cells (pp165, 205, 240, 250, 270, 290, and ~ 400) and one such protein in hamster BHK cells (pp155). In synchronized HeLa and BHK cells, all proteins except HeLa pp165, pp205, and pp250 were readily detectable only in mitosis. Tyrosine phosphorylation of pp165, pp205, and pp250 was apparent during arrest in S phase, suggesting that cell cycle perturbations can affect the phosphorylation state of some of these proteins. In a related finding in BHK cells, pp155 underwent tyrosine phosphorylation when cells were forced into premature mitosis by caffeine treatment. Only one protein (pp135 in HeLa cells) was found to be dephosphorylated on tyrosine during mitosis. The above findings may prove helpful for isolating new cell cycle proteins that are important for both the normal regulation of mitosis and the mitotic aberrations associated with cell cycle perturbations and chemical treatments.  相似文献   

15.
16.
EM investigation of Ag-AS-NOR staining after short glutaraldehyde prefixation followed by Carnoy fixation maintained good ultrastructural preservation and reactive selectivity. This enables exact localization of silver deposits both in the fibrillar centers of typical or segregated nucleoli during interphase, and in chromosome NORs during mitosis. These results argue in favour of the possibility that fibrillar centers are the interphasic counterpart of chromosome NORs. Special structures such as nucleolar blobs and remnants usually considered to be of nucleolar origin, were also stained. — These findings seem to indicate a relationship between the distribution of the silver-stained proteins, the arrangement of the nucleolar structures and the degree of nucleolar activity resulting from the experimental conditions. These results are of interest at the time when the concept of the nucleolar matrix is gradually emerging.  相似文献   

17.
Paraspeckle protein 1 (PSPC1) was first identified as a structural protein of the subnuclear structure termed paraspeckle. However, the exact physiological functions of PSPC1 are still largely unknown. Previously, using a proteomic approach, we have shown that exposure to cisplatin can induce PSPC1 expression in HeLa cells, indicating the possible involvement for PSPC1 in the DNA damage response (DDR). In the current study, the role of PSPC1 in DDR was examined. First, it was found that cisplatin treatment could indeed induce the expression of PSPC1 protein. Abolishing PSPC1 expression by siRNA significantly inhibited cell growth, caused spontaneous cell death, and increased DNA damage. However, PSPC1 did not co-localize with γH2AX, 53BP1, or Rad51, indicating no direct involvement in DNA repair pathways mediated by these molecules. Interestingly, knockdown of PSPC1 disrupted the normal cell cycle distribution, with more cells entering the G2/M phase. Furthermore, while cisplatin induced G1/S arrest in HeLa cells, knockdown of PSPC1 caused cells to escape the G1/S checkpoint and enter mitosis, and resulted in more cell death. Taken together, these observations indicate a new role for PSPC1 in maintaining genome integrity during the DDR, particularly in the G1/S checkpoint.  相似文献   

18.
19.
Using time-lapse microscopy, the changes in L-929 cells shape were analyzed during a cell cycle. During this time the cells were established to pass through three spreading stages. The highest rate of the cell spreading was observed during the first 1.5 h of mitosis. In this period, the cell area increases approximately 3-3.5 times following sigmoid dependence. After a short plateau the augmentation of the cell area starts also as a sigmoid dependence. This period is longer (up to 6 h after the beginning of cell division) with an additional 1.5-fold augmentation of the cells size. Next, the augmentation of the cells area goes linearly up to the beginning of the following mitosis. After the mother L-929 cell division, the daughter cells remained to be bridged together in the fission furrow site almost in 100% cases. The structure known as an intercellular bridge is related to a late telophase. In this connected state the L-cells are spreading and migrating up to 2.13 +/- 0.06 h where upon they are separated. Transition of the daughter cells from a round shape to the spread one occurring with the simultaneous maintenance of the intercellular bridge during a strictly determined time allows us to consider this phenomenon as independent and not relating to mitosis. We suggest naming this junction between the daughter cells as the "posttelophase intercellular bridge".  相似文献   

20.
A cell contains many copies of mitochondrial DNA. The distribution of a mitochondrial gene mutation in a cell culture is governed by the way in which the mtDNA molecules of a cell are replicated and partitioned between the two daughter cells during mitosis. Assuming that this partition process is random, we describe the evolution of the mitochondrial genetic state of a cell culture. The mutated mtDNA is ultimately segregated and the rate of the trend to segregation is relatively slow. It is nevertheless greatly accelerated if the model takes into account the spatial mtDNA partition by the mitochondrial compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号