首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multigene family which codes for the mouse major urinary proteins consists of about 35 genes. Most of these are members of two distinct groups, group 1 and group 2. The group 1 and group 2 genes are organized in head-to-head pairs within 12 to 15 remarkably uniform chromosomal units or domains about 45 kilobase pairs (kb) in size. The 45-kb units are located on chromosome 4, and many of them are adjacent to each other. We propose that the 45-kb unit is a unit both of organization and of evolutionary change. In this study the homologies within the unit were observed by examining, in an electron microscope, heteroduplex and foldback structures made from cloned major urinary protein genes. These show that the 45-kb unit is a gigantic imperfect palindrome. Each arm of the palindrome contains two regions of inverted symmetry of 9.5 and 4.5 kb separated by a 3-kb nonsymmetrical region. We argue that the nonsymmetrical regions arose by a series of deletion events in the two arms of the palindrome. The center of the 45-kb unit is an 8-kb sequence without inverted symmetry flanked by the 9.5-kb regions, which contain the 4-kb genes and their immediate 5' and 3' flanking regions. The junction between adjacent 45-kb units is a 2- to 4-kb sequence without inverted symmetry flanked by the 4.5-kb regions. Some of the 45-kb units are arranged as direct tandem repeats. Others appear to be in inverted orientation with respect to a neighboring unit. Cloned major urinary protein genes show few incidences of the repetitive elements B1, B2, R, and MIF. Two elements, a B1 and an R, may be a constant feature of the 45-kb units. If so, in those cases in which the units are in tandem array, both of these elements will occur with a 45-kb periodicity. A comparison of corresponding parts of different 45-kb units shows that they differ because of a number of deletion or insertion events, particularly in the regions 3' to the genes.  相似文献   

2.
Adenovirus DNA polymerase is one of three viral proteins and two cellular proteins required for replication of the adenovirus genome. During initiation of viral DNA synthesis the viral DNA polymerase transfers dCMP onto the adenovirus preterminal protein, to which it is tightly bound. The domain structure of the 140 kDa DNA polymerase has been probed by partial proteolysis and the sites of proteolytic cleavage determined by N-terminal sequencing. At least four domains can be recognised within the DNA polymerase. Adenovirus preterminal protein interacts with three of the four proteolytically derived domains. This was confirmed by cloning and expression of each of the individual domains. These data indicate that, like other members of the pol alpha family of DNA polymerases, the adenovirus DNA polymerase has a multidomain structure and that interaction with preterminal protein takes place with non-contiguous regions of the polypeptide chain over a large surface area of the viral DNA polymerase.  相似文献   

3.
4.
Structural genes of the mouse major urinary protein are on chromosome 4   总被引:10,自引:0,他引:10  
The major urinary proteins (MUPs) of mouse are a family of at least three major proteins which are synthesized in the liver of all strains of mice. The relative levels of synthesis of these proteins with respect to each other in the presence of testosterone is regulated by the Mup-a locus located on chromosome 4. In an effort to determine the mechanism of this regulation in molecular terms, a cDNA clone containing most of the coding region of a MUP protein has been isolated and identified by partial DNA sequence analysis. Using a combination of hybridization analysis and somatic cell genetics, the structural gene family has been unambiguously mapped to mouse chromosome 4. These data suggest that Mup-a regulation operates in a cis fashion and that models proposing trans regulation of MUP protein synthesis are unlikely.  相似文献   

5.
The MAT A locus of Yarrowia lipolytica, which was on the basis of its ability to induce sporulation in a diploid B/B strain, represses the mating capacity of this strain. The gene functions required for induction of sporulation and repression of conjugation could be separated by subcloning. Sequence analysis revealed two ORFs in the MAT A locus. One of them (MAT A1) codes for a protein of 119 amino acids which is required to induce sporulation. The other (MAT A2) codes for a protein of 291 amino acids that is able to repress conjugation. Both genes are oriented divergently from a central promoter region, which possesses putative TATA and CAAT boxes for both genes. The product of MAT A1 shows no homology to any known protein and seems to represent a new class of mating-type genes. MAT A2 contains a HMG box with homology to other mating-type genes. Both MAT A1 and MAT A2 are mating-type specific. In cells of both mating types, the regions flanking the MAT A locus contain sequences with homology to either S. cerevisiae SLA2 and ORF YBB9, respectively. From hybridization and subcloning data we estimate that the MAT A region is approximately 2?kb long and is present only once in the genome.  相似文献   

6.
The predominant repeating structure of a fraction of the fucoidan from Ascophyllum nodosum prepared by acid hydrolysis and centrifugal partition chromatography (LMWF) was established as: [-->3)-alpha-L-Fuc(2SO3-)-(1-->4)-alpha-L-Fuc(2,3diSO3-)-(1]n by NMR spectroscopy and methylation analysis. The proton and carbon NMR spectra of this unit have been assigned and found to correspond with features in the spectra of the whole purified fucan from A. nodosum which account for most of the integrated intensity. The same structure has also been recognised in the fucoidan of Fucus vesiculosus. The fraction LMWF has in vitro anticoagulant activity, indicating that the above structure may be partly responsible for biological activity in the native fucoidan.  相似文献   

7.
Murine alpha1,2-mannosidase IB is a type II transmembrane protein localized to the Golgi apparatus where it is involved in the biogenesis of complex and hybrid N-glycans. This enzyme consists of a cytoplasmic tail, a transmembrane domain followed by a "stem" region and a large C-terminal catalytic domain. To analyze the determinants of targeting, we constructed various deletion mutants of murine alpha1,2-mannosidase IB as well as alpha1,2-mannosidase IB/yeast alpha1,2-mannosidase and alpha1,2-mannosidase IB/GFP chimeras and localized these proteins by fluorescence microscopy, when expressed transiently in COS7 cells. Replacing the catalytic domain of alpha1,2-mannosidase IB with that of the homologous yeast alpha1,2-mannosidase and deleting the "stem" region in this chimera had no effect on Golgi targeting, but caused increased cell surface localization. The N-terminal tagged protein lacking a catalytic domain was also localized to the Golgi. In the latter case, when the stem region was partially or completely removed, the protein was found in both the ER and the Golgi. A chimera consisting of the alpha1,2-mannosidase IB N-terminal region (cytoplasmic and transmembrane domains plus 10 amino acids of the "stem" region) and GFP was localized mainly to the Golgi. Deletion of 30 out of 35 amino acids in the cytoplasmic tail had no effect on Golgi localization. A GFP chimera lacking the entire cytoplasmic tail was found in both the ER and the Golgi. These results indicate that the transmembrane domain of alpha1,2-mannosidase IB is a major determinant of Golgi localization.  相似文献   

8.
9.
We isolated two rice cDNAs (rMip1 and rTip1) which are homologous to the genes encoding the major intrinsic protein (Mip) (soybean nod-26 and Arabidopsis -Tip), respectively. Expression of rTip1 in shoots and roots of rice seedlings was enhanced by water stress, salt stress and exogenous ABA. rMip1 was expressed only in shoots. Although mRNA level of rMip1 in shoots was induced to a small extent by exogenous ABA, it did not show any increase under water or salt stress over the course of 12 h. On the basis of the differential expression patterns and evolutional distinctions, it is suggested that the possible channel proteins encoded by rMip1 and rTip1 genes may function in different transport systems.  相似文献   

10.
The gene BRCA2, first identified as a breast cancer susceptibility locus in humans, encodes a protein involved in DNA repair in mammalian cells and mutations in this gene confer increased risk of breast cancer. Here we report a functional characterisation of a Trypanosoma brucei BRCA2 (TbBRCA2) orthologue and show that the protein interacts directly with TbRAD51. A further protein-protein interaction screen using TbBRCA2 identified other interacting proteins, including a trypanosome orthologue of CDC45 which is involved in initiation and progression of the replication fork complex during DNA synthesis. Deletion of the TbBRCA2 gene retards cell cycle progression during S-phase as judged by increased incorporation of BrdU and an increased percentage of cells with one nucleus and two kinetoplasts. These results provide insights into the potential role played by BRCA2 in DNA replication and reveal a novel interaction that couples replication and recombination in maintaining integrity of the genome.  相似文献   

11.
Changes in the envelope proteins of retroviruses can alter the ability of these viruses to infect the central nervous system (CNS) and induce neurological disease. In the present study, nine envelope residues were found to influence neurovirulence of the Friend murine polytropic retrovirus Fr98. When projected on a three-dimensional model, these residues were clustered in two spatially separated groups, one in variable region B of the receptor binding site and the other on the opposite side of the envelope. Further studies indicated a role for these residues in virus replication in the CNS, although the residues did not affect viral entry.  相似文献   

12.
13.
Although structures of single-stranded (ss)DNA-binding proteins (SSBs) have been reported with and without ssDNA, the mechanism of ssDNA binding in eukarya remains speculative. Here we report a 2.5 Angstroms structure of the ssDNA-binding domain of human replication protein A (RPA) (eukaryotic SSB), for which we previously reported a structure in complex with ssDNA. A comparison of free and bound forms of RPA revealed that ssDNA binding is associated with a major reorientation between, and significant conformational changes within, the structural modules--OB-folds--which comprise the DNA-binding domain. Two OB-folds, whose tandem orientation was stabilized by the presence of DNA, adopted multiple orientations in its absence. Within the OB-folds, extended loops implicated in DNA binding significantly changed conformation in the absence of DNA. Analysis of intermolecular contacts suggested the possibility that other RPA molecules and/or other proteins could compete with DNA for the same binding site. Using this mechanism, protein-protein interactions can regulate, and/or be regulated by DNA binding. Combined with available biochemical data, this structure also suggested a dynamic model for the DNA-binding mechanism.  相似文献   

14.
15.
M Yu  J Summers 《Journal of virology》1991,65(5):2511-2517
Mutations introduced into the capsid gene of duck hepatitis B virus (DHBV) were tested for their effects on viral DNA synthesis and assembly of enveloped viruses. Four classes of mutant phenotypes were observed among a series of deletions of covering the 3' end of the capsid open reading frame. Class I mutant capsids were able to support normal single-stranded and relaxed circular viral DNA synthesis; class II mutant capsids supported normal single-stranded DNA synthesis but not relaxed circular DNA synthesis; class III mutant capsids resembled class II capsids, but viral DNA synthesis was inhibited 5- to 10-fold; and class IV capsids were severely restricted in their ability to support viral DNA synthesis. Class I capsids were assembled into enveloped virions, but class II, III, and IV capsids were not. Viral DNA synthesized inside class II capsids was normal with respect to minus-strand DNA initiation, plus-strand DNA initiation, and circularization of the DNA, but plus strands failed to be elongated to mature 3-kb DNA. The results suggest that a function of the capsid protein specifically required for viral DNA maturation is also required for assembly of nucleocapsids into envelopes. Thus, class II mutants appear to be defective in the appearance of the "packaging signal" for virus assembly (J. Summers and W. Mason, Cell 29:403-415, 1982).  相似文献   

16.
We have constructed a clone which over-produces a 33 kDa protein representing the C-terminal portion of the Escherichia coli DNA gyrase A subunit. This protein has no enzymic activity of its own, but will form a complex with a 64 kDa protein (representing the N-terminal part of the A subunit) and the gyrase B subunit, that will efficiently catalyse DNA supercoiling. We show that the 33 kDa protein can bind to DNA on its own in a manner which induces positive supercoiling of the DNA. We propose that the 33 kDa protein represents a domain of the gyrase A subunit which is involved in the wrapping of DNA around DNA gyrase.  相似文献   

17.
18.
《The Journal of cell biology》1989,109(4):1695-1709
The flagellum of the parasitic hemoflagellate Trypanosoma brucei contains two major structures: (a) the microtubule axoneme, and (b) a highly ordered, filamentous array, the paraflagellar rod (PFR). This is a complex, three-dimensional structure, of yet unknown function, that extends along most of the axoneme and is closely linked to it. Its major structural component is a single protein of 600 amino acids. This PFR protein can assume two different conformations, resulting in two distinct bands of apparent molecular masses of 73 and 69 kD in SDS-gel electrophoresis. Secondary structure predictions indicate a very high helix content. Despite its biochemical similarity to the intermediate filament proteins (solubility properties, amino acid composition, and high degree of helicity), the PFR protein does not belong in this class of cytoskeletal proteins. The PFR protein is coded for by two tandemly linked genes of identical nucleotide sequence. Both genes are transcribed into stable mRNAs of very similar length that carry the mini-exon sequence at their 5'' termini.  相似文献   

19.
20.
The major urinary proteins of the mouse are encoded by a large multigene family composed of several distinct groups of genes distinguished by differences in sequence and expression characteristics. The genes in the largest group (group 1) show greater than 99% pairwise similarity in their exons. By hybridization between RNA and a specifically designed oligonucleotide, we confirmed that genes of this group are expressed mainly in the liver. By using additional gene-specific oligonucleotide probes, we have been able to distinguish between the species of mRNA corresponding to two of these genes and to measure their abundance in male and female liver. Both mRNAs are present in male liver at high but different levels. Both are also present in female liver, one at a much lower level than in the male and the second at a very low level indeed. Both are present at male levels in the livers of females induced with testosterone. These results show unequivocally that the expression of different group 1 Mup genes is differentially influenced by the hormonal status of the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号