首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membrane localization of Ras requires posttranslational addition of farnesyl and palmitoyl lipid moieties to a C-terminal CaaX motif (C is cysteine, a is any aliphatic residue, X is the carboxy terminal residue). To better understand the relationship between posttranslational processing and the subcellular localization of Ras, a yeast genetic screen was undertaken based on the loss of function of a palmitoylation-dependent RAS2 allele. Mutations were identified in an uncharacterized open reading frame (YLR246w) that we have designated ERF2 and a previously described suppressor of hyperactive Ras, SHR5. ERF2 encodes a 41-kDa protein with four predicted transmembrane (TM) segments and a motif consisting of the amino acids Asp-His-His-Cys (DHHC) within a cysteine-rich domain (CRD), called DHHC-CRD. Mutations within the DHHC-CRD abolish Erf2 function. Subcellular fractionation and immunolocalization experiments reveal that Erf2 tagged with a triply iterated hemagglutinin epitope is an integral membrane protein that colocalizes with the yeast endoplasmic reticulum marker Kar2. Strains lacking ERF2 are viable, but they have a synthetic growth defect in the absence of RAS2 and partially suppress the heat shock sensitivity resulting from expression of the hyperactive RAS2(V19) allele. Ras2 proteins expressed in an erf2Delta strain have a reduced level of palmitoylation and are partially mislocalized to the vacuole. Based on these observations, we propose that Erf2 is a component of a previously uncharacterized Ras subcellular localization pathway. Putative members of an Erf2 family of proteins have been uncovered in yeast, plant, worm, insect, and mammalian genome databases, suggesting that Erf2 plays a role in Ras localization in all eucaryotes.  相似文献   

2.
The two recently identified protein acyl transferases (PATs), Akr1p and Erf2p/Erf4p, point toward the DHHC protein family as a likely PAT family. The DHHC protein family, defined by the novel, zinc finger-like DHHC cysteine-rich domain (DHHC-CRD), is a diverse collection of polytopic membrane proteins extending through all eukaryotes. To define the PAT domains that are oriented to the cytoplasm and are thus available to effect the cytoplasmically limited palmitoyl modification, we have determined the transmembrane topology of the yeast PAT Akr1p. Portions of the yeast protein invertase (Suc2p) were inserted in-frame at 10 different hydrophilic sites within the Akr1 polypeptide. Three of the Akr1-Suc2-Akr1 insertion proteins were found to be extensively glycosylated, indicating that the invertase segment inserted at these Akr1p sites is luminally oriented. The remaining seven insertion proteins were not glycosylated, consistent with a cytoplasmic orientation for these sites. The results support a model in which the Akr1 polypeptide crosses the bilayer six times with the bulk of its hydrophilic domains disposed toward the cytoplasm. Cytoplasmic domains include both the relatively large, ankyrin repeat-containing N-terminal domain and the DHHC-CRD, which maps to a cytosolic loop segment. Functionality of the different Akr1-Suc2-Akr1 proteins also was examined. Insertions at only 4 of the 10 sites were found to disrupt Akr1p function. Interestingly, these four sites all map cytoplasmically, suggesting key roles for these cytoplasmic domains in Akr1 PAT function. Finally, extrapolating from the Akr1p topology, topology models are proposed for other DHHC protein family members.  相似文献   

3.
4.
Subcellular localization of Ras proteins to the plasma membrane is accomplished in part by covalent attachment of a farnesyl moiety to the conserved CaaX box cysteine. Farnesylation targets Ras to the endoplasmic reticulum (ER), where additional processing steps occur, resulting in translocation of Ras to the plasma membrane. The mechanism(s) by which this occurs is not well understood. In this report, we show that plasma membrane localization of Ras2p in Saccharomyces cerevisiae does not require the classical secretory pathway or a functional Golgi apparatus. However, when the classical secretory pathway is disrupted, plasma membrane localization requires Erf2p, a protein that resides in the ER membrane and is required for efficient palmitoylation of Ras2p. Deletion of ERF2 results in a Ras2p steady-state localization defect that is more severe when combined with sec-ts mutants or brefeldin A treatment. The Erf2p-dependent localization of Ras2p correlates with the palmitoylation of Cys-318. An Erf2p-Erf4p complex has recently been shown to be an ER-associated palmitoyltransferase that can palmitoylate Cys-318 of Ras2p (S. Lobo, W. K. Greentree, M. E. Linder, and R. J. Deschenes, J. Biol. Chem. 277:41268-41273, 2002). Erf2-dependent palmitoylation as well as localization of Ras2p requires a region of the hypervariable domain adjacent to the CaaX box. These results provide evidence for the existence of a palmitoylation-dependent, nonclassical endomembrane trafficking system for the plasma membrane localization of Ras proteins.  相似文献   

5.
Protein S-palmitoylation is a posttranslational modification in which a palmitoyl group is added to a protein via a thioester linkage on cysteine. Palmitoylation is a reversible modification involved in protein membrane targeting, receptor trafficking and signaling, vesicular biogenesis and trafficking, protein aggregation, and protein degradation. An example of the dynamic nature of this modification is the palmitoylation-depalmitoylation cycle that regulates the subcellular trafficking of Ras family GTPases. The Ras protein acyltransferase (PAT) consists of a complex of Erf2-Erf4 and DHHC9-GCP16 in yeast and mammalian cells, respectively. Both subunits are required for PAT activity, but the function of the Erf4 and Gcp16 subunits has not been established. This study elucidates the function of Erf4 and shows that one role of Erf4 is to regulate Erf2 stability through an ubiquitin-mediated pathway. In addition, Erf4 is required for the stable formation of the palmitoyl-Erf2 intermediate, the first step of palmitoyl transfer to protein substrates. In the absence of Erf4, the rate of hydrolysis of the active site palmitoyl thioester intermediate is increased, resulting in reduced palmitoyl transfer to a Ras2 substrate. This is the first demonstration of regulation of a DHHC PAT enzyme by an associated protein.  相似文献   

6.
Protein palmitoylation refers to the posttranslational addition of a 16 carbon fatty acid to the side chain of cysteine, forming a thioester linkage. This acyl modification is readily reversible, providing a potential regulatory mechanism to mediate protein-membrane interactions and subcellular trafficking of proteins. The mechanism that underlies the transfer of palmitate or other long-chain fatty acids to protein was uncovered through genetic screens in yeast. Two related S-palmitoyltransferases were discovered. Erf2 palmitoylates yeast Ras proteins, whereas Akr1 modifies the yeast casein kinase, Yck2. Erf2 and Akr1 share a common sequence referred to as a DHHC (aspartate-histidine-histidine-cysteine) domain. Numerous genes encoding DHHC domain proteins are found in all eukaryotic genome databases. Mounting evidence is consistent with this signature motif playing a direct role in protein acyltransferase (PAT) reactions, although many questions remain. This review presents the genetic and biochemical evidence for the PAT activity of DHHC proteins and discusses the mechanism of protein-mediated palmitoylation.  相似文献   

7.
Covalent lipid modifications mediate the membrane attachment and biological activity of Ras proteins. All Ras isoforms are farnesylated and carboxyl-methylated at the terminal cysteine; H-Ras and N-Ras are further modified by palmitoylation. Yeast Ras is palmitoylated by the DHHC cysteine-rich domain-containing protein Erf2 in a complex with Erf4. Here we report that H- and N-Ras are palmitoylated by a human protein palmitoyltransferase encoded by the ZDHHC9 and GCP16 genes. DHHC9 is an integral membrane protein that contains a DHHC cysteine-rich domain. GCP16 encodes a Golgi-localized membrane protein that has limited sequence similarity to yeast Erf4. DHHC9 and GCP16 co-distribute in the Golgi apparatus, a location consistent with the site of mammalian Ras palmitoylation in vivo. Like yeast Erf2.Erf4, DHHC9 and GCP16 form a protein complex, and DHHC9 requires GCP16 for protein fatty acyltransferase activity and protein stability. Purified DHHC9.GCP16 exhibits substrate specificity, palmitoylating H- and N-Ras but not myristoylated G (alphai1) or GAP-43, proteins with N-terminal palmitoylation motifs. Hence, DHHC9.GCP16 displays the properties of a functional human ortholog of the yeast Ras palmitoyltransferase.  相似文献   

8.
The intestinal protozoan parasite Giardia lamblia undergoes surface antigenic variation whereby one of a family of structurally related variant-specific surface proteins (VSPs) is replaced in a regulated process by another antigenically distinct VSP. All VSPs are type I membrane proteins that have a conserved hydrophobic sequence terminated by the invariant hydrophilic amino acids, CRGKA. Using transfected Giardia constitutively expressing HA-tagged VSPH7 and incubated with radioactive [3H]palmitate, we demonstrate that the palmitate is attached to the Cys in the conserved CRGKA tail. Surface location of mutant VSPs lacking either the CRGKA tail or its Cys is identical to that of wild-type VSPH7 but non-palmitoylated mutants fail to undergo complement-independent antibody specific cytotoxicity. In addition, membrane localization of non-palmitoylated mutant VSPH7 changes from a pattern similar to rafts to non-rafts. Palmitoyl transferases (PAT), responsible for protein palmitoylation in other organisms, often possess a cysteine-rich domain containing a conserved DHHC motif (DHHC-CRD). An open reading frame corresponding to a putative 50 kDa Giardia PAT (gPAT) containing a DHHC-CRD motif was found in the Giardia genome database. Expression of epitope-tagged gPAT using a tetracycline inducible vector localized gPAT to the plasma membrane, a pattern similar to that of VSPs. Transfection with gPAT antisense producing vectors inhibits gPAT expression and palmitoylation of VSPs in vitro confirming the function of gPAT. These results show that VSPs are palmitoylated at the cysteine within the conserved tail by gPAT and indicate an essential function of palmitoylation in control of VSP-mediated signalling and processing.  相似文献   

9.
10.
Angiotensin II (AII) increases production of reactive oxygen species from NAD(P)H oxidase, a response that contributes to vascular hypertrophy. Here we show in cultured vascular smooth muscle cells that S-glutathiolation of the redox-sensitive Cys(118) on the small GTPase, Ras, plays a critical role in AII-induced hypertrophic signaling. AII simultaneously increased the Ras activity and the S-glutathiolation of Ras (GSS-Ras) detected by biotin-labeled GSH or mass spectrometry. Both the increase in activity and GSS-Ras was labile under reducing conditions, suggesting the essential nature of this thiol modification to Ras activation. Overexpression of catalase, a dominant-negative p47(phox), or glutaredoxin-1 decreased GSS-Ras, Ras activation, p38, and Akt phosphorylation and the induction of protein synthesis by AII. Furthermore, expression of a Cys(118) mutant Ras decreased AII-mediated p38 and Akt phosphorylation as well as protein synthesis. These results show that H(2)O(2) from NAD(P)H oxidase forms GSS-Ras on Cys(118) and increases its activity leading to p38 and Akt phosphorylation, which contributes to the induction of protein synthesis. This study suggests that GSS-Ras is a redox-sensitive signaling switch that participates in the cellular response to AII.  相似文献   

11.
12.
13.
14.
Heo J  Campbell SL 《Biochemistry》2004,43(8):2314-2322
Nitric oxide (NO), a highly reactive redox molecule, can react with protein thiols and protein metal centers to regulate a multitude of physiological processes. NO has been shown to promote guanine nucleotide exchange on the critical cellular signaling protein p21Ras (Ras) by S-nitrosylation of a redox-active thiol group (Cys(118)). This increases cellular Ras-GTP levels in vivo, leading to activation of downstream signaling pathways. Yet the process by which this occurs is not clear. Although several feasible mechanisms for protein S-nitrosylation with NO and NO donating have been proposed, results obtained from our studies suggest that Ras can be S-nitrosylated by direct reaction of Cys(118) with nitrogen dioxide (*NO(2)), a reaction product of NO with O(2), via a Ras thiyl-radical intermediate (Ras-S*). Results from our studies also indicate that Ras Cys(118) can be S-nitrosylated by direct reaction of Cys(118) with a glutathionyl radical (GS*), a reaction product derived from homolytic cleavage of S-nitrosoglutathione (GSNO). Moreover, we present evidence that reaction of GS* with Ras generates a Ras-S* intermediate during GSNO-mediated Ras S-nitrosylation. The Ras-S(*) radical intermediate formed from reaction of the Ras thiol with either *NO(2) or GS*, in turn, reacts with NO to complete Ras S-nitrosylation. NO and GSNO modulate Ras activity by promoting guanine nucleotide dissociation from Ras. Our results suggest that formation of the Ras radical intermediate, Ras-S*, may perturb interactions between Ras and its guanine nucleotide substrate, resulting in enhancement of guanine nucleotide dissociation from Ras.  相似文献   

15.
16.
Pleckstrin homology domains are structurally conserved functional domains that can undergo both protein/protein and protein/lipid interactions. Pleckstrin homology domains can mediate inter- and intra-molecular binding events to regulate enzyme activity. They occur in numerous proteins including many that interact with Ras superfamily members, such as p120 GAP. The pleckstrin homology domain of p120 GAP is located in the NH(2)-terminal, noncatalytic region of p120 GAP. Overexpression of the noncatalytic domains of p120 GAP may modulate Ras signal transduction pathways. Here, we demonstrate that expression of the isolated pleckstrin homology domain of p120 GAP specifically inhibits Ras-mediated signaling and transformation but not normal cellular growth. Furthermore, we show that the pleckstrin homology domain binds the catalytic domain of p120 GAP and interferes with the Ras/GAP interaction. Thus, we suggest that the pleckstrin homology domain of p120 GAP may specifically regulate the interaction of Ras with p120 GAP via competitive intra-molecular binding.  相似文献   

17.
Pharmacologic approaches to studying palmitoylation are limited by the lack of specific inhibitors. Recently, screens have revealed five chemical classes of small molecules that inhibit cellular processes associated with palmitoylation (Ducker, C. E., L. K. Griffel, R. A. Smith, S. N. Keller, Y. Zhuang, Z. Xia, J. D. Diller, and C. D. Smith. 2006. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol. Cancer Ther. 5: 1647-1659). Compounds that selectively inhibited palmitoylation of N-myristoylated vs. farnesylated peptides were identified in assays of palmitoyltransferase activity using cell membranes. Palmitoylation is catalyzed by a family of enzymes that share a conserved DHHC (Asp-His-His-Cys) cysteine-rich domain. In this study, we evaluated the ability of these inhibitors to reduce DHHC-mediated palmitoylation using purified enzymes and protein substrates. Human DHHC2 and yeast Pfa3 were assayed with their respective N-myristoylated substrates, Lck and Vac8. Human DHHC9/GCP16 and yeast Erf2/Erf4 were tested using farnesylated Ras proteins. Surprisingly, all four enzymes showed a similar profile of inhibition. Only one of the novel compounds, 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one [Compound V (CV)], and 2-bromopalmitate (2BP) inhibited the palmitoyltransferase activity of all DHHC proteins tested. Hence, the reported potency and selectivity of these compounds were not recapitulated with purified enzymes and their cognate lipidated substrates. Further characterization revealed both compounds blocked DHHC enzyme autoacylation and displayed slow, time-dependent inhibition but differed with respect to reversibility. Inhibition of palmitoyltransferase activity by CV was reversible, whereas 2BP inhibition was irreversible.  相似文献   

18.
Dietrich LE  Ungermann C 《EMBO reports》2004,5(11):1053-1057
Protein palmitoylation or, more specifically, S-acylation is a reversible post-translational lipid modification. Despite the identification of several proteins that are altered in this way, our understanding of the enzymology of this process has been hampered by the lack of well-characterized acyltransferases. We now know of three proteins in Saccharomyces cerevisiae that promote palmitoylation: effector of Ras function (Erf2), ankyrin-repeat-containing protein (Akr1) and the SNARE protein Ykt6. Erf2 and Akr1 are integral membrane proteins that contain a cysteine-rich domain and an Asp-His-His-Cys motif, both of which catalyse acylation at the carboxyl terminus of their target proteins. Recently, we discovered that Ykt6 mediates the amino-terminal acylation of the fusion protein Vac8. Even though these three proteins differ in sequence, topology, size and substrate specificity, they might function in a similar manner. In this review, we discuss these observations in the context of a potential general mechanism of acylation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号