首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrogenic ATPase activity on the peribacteroid membrane from soybean (Glycine max L. cv Bragg) root nodules is demonstrated. Membrane energization was monitored using suspensions of intact peribacteroid membrane-enclosed bacteroids (peribacteroid units; PBUs) and the fluorescent probe for membrane potential (ΔΨ), bis-(3-phenyl-5-oxoisoxazol-4yl) pentamethine oxonol. Generation of a positive ΔΨ across the peribacteroid membrane was dependent upon ATP, inhibited by N,N′-dicyclohexyl-carbodiimide and vanadate, but insensitive to N-ethylmaleimide, azide, cyanide, oligomycin, and ouabain. The results suggest the presence of a single, plasma membrane-like, electrogenic ATPase on the peribacteroid membrane. The protonophore, carbonyl-cyanide m-chlorophenyl hydrazone, completely dissipated the established membrane potential. The extent of reduction in the steady state membrane potential upon addition of ions was used to estimate the relative permeability of the peribacteroid membrane to anions. By this criterion, the relative rates of anion transport across the peribacteroid membrane were: NO3 > NO2 > Cl > acetate > malate. The observation that 10 millimolar NO3 completely dissipated the membrane potential was of particular interest in view of the fact that NO3 inhibits symbiotic nitrogen fixation. The possible function of the ATPase in symbiotic nitrogen fixation is discussed.  相似文献   

2.
ATP Sulfurylase Activity in the Soybean [Glycine max (L.) Merr.   总被引:2,自引:5,他引:2       下载免费PDF全文
Adams CA  Johnson RE 《Plant physiology》1968,43(12):2041-2044
ATP sulfurylase activity was assayed in soybean leaf extracts. A simple, rapid assay system using molybdate as an analogue of sulfate was developed. The assay was coupled to inorganic pyrophosphatase. The high pyrophosphatase level in soybean leaf extracts obviated the necessity of adding this enzyme to the assay system. ATP sulfurylase has a pH maximum above 7.5, uses molybdate and ATP as substrates, and requires magnesium ions for activity.  相似文献   

3.
大豆遗传转化研究进展   总被引:4,自引:0,他引:4  
综述了大豆遗传转化体系及其优缺点,转基因大豆的研究成果、生产状况和生物安全性评价,分析了大豆遗传转化中存在的一些问题及其解决办法,展望了未来大豆遗传转化的发展前景。  相似文献   

4.
Protoplasts were isolated enzymatically from immature cotyledons of soybean. The protoplasts divided to form calli in the K8P liquid medium. The calli further grew to 2–3 mm on the solid K8 medium and were transferred onto the MSB medium (MS minerals+B5 organic components+0.5–1.0 mg/l 2,4-D+0.2–0.5 mg/l BA) to obtain compact and nodular calli. Shoot formation was initiated on M1 medium (MSB medium with 0.15 mg/1 NAA, and BA, KT and ZT, 0.5 mg/l of each, 500 mg/1 CH). Differentiation frequency was 13.6–24.2%. Plants have been regenerated from protoplasts of immature cotyledons in 2 cultivars, and normal pods were obtained from them.  相似文献   

5.

Plant-derived smoke plays a key role in plant growth. Proteomic technique was used for underlying mechanisms of plant-derived smoke on the growth of soybean (Glycine max L.) under flooding stress. The length and weight of soybean root increased with 2000 parts per million plant-derived smoke under flooding stress within 4 days. Altered proteins by plant-derived smoke treatment under flooding stress were mainly related to protein metabolism, stress, and redox. Furthermore, proteins related to mitochondrial electron transport chain decreased by flooding stress; however, they increased by addition of plant-derived smoke under flooding stress. Based on the results of proteomic analysis, confirmation experiments were performed. ATPase abundance and ATP content increased with the treatment of plant-derived smoke under flooding stress. Furthermore, the ascorbate/glutathione cycle was activated with the treatment of plant-derived smoke under flooding stress. These results suggest that plant-derived smoke improves the root growth of soybean with energy production and reactive oxygen scavenging even if it is under flooding stress, which might positively regulate soybean tolerance towards flooding stress.

  相似文献   

6.
Soybean is a major leguminous plant that has the ability to establish a symbiotic association with the N-fixing bacteria, Bradyrhizobium japonicum. Soils are usually subjected to stress including salinity, drought, acidity, and suboptimal root zone temperature, adversely affecting the symbiotic process between soybean and the bacteria. One of the important processes affecting the performance of soybean under stress is the inhibited exchange of symbiosis-related signaling molecules, specifically genistein, between the host legume and B. japonicum during the initiation of symbiosis. Interestingly, inoculation of B. japonicum with the signal molecule genistein can partially or completely alleviate the stress. Understanding the techniques and the precise molecular pathways, which may be influenced by the signaling molecules during the stress, can be useful to determine parameters that enhance the plant’s ability to cope with stress. For example, the use of proteomic techniques to identify proteins expressed under stress can help characterize those proteins and their involvement in stress. Biotechnological-genetic techniques, either breeding or transformation, are also among the effective methods of improving soybean’s ability to fix N2 under stress. This can be achieved by identifying the genes, which may be expressed under stress in tolerant bacterial and plant species, and inserting them into the non-tolerant species. This article highlights some important advances in soybean N2 fixation under different stress conditions, and reviews some of the techniques used to improve the ability of plants and bacteria to efficiently fix N2 under stress.  相似文献   

7.
Soybean (Glycine max [L.] Merr.) root nodules contain the enzymes of the ascorbate-glutathione pathway to minimize oxidative damage. In the present study, fractionation and immunocytochemistry were used to determine the subcellular location of the enzymes of this pathway. All four enzymes (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase) were present in the soluble fraction from nodule plant cells and in isolated mitochondria. No activity was detected in peroxisomes. Bacteroids contained glutathione reductase but not the other enzymes of this pathway. Immunogold localization indicated that ascorbate peroxidase was present in the cytosol of infected and uninfected cells but not in the peribacteroid space. Results of immunogold and immunofluorescence studies indicated that monodehydroascorbate reductase was located primarily in the cell wall, suggesting that ascorbate regeneration in the cytoplasm may proceed primarily through the action of dehydroascorbate reductase. The possible roles of monodehydroascorbate reductase in cell wall metabolism are discussed.  相似文献   

8.
Rosenberg, L. A. and Rinne, R. W. 1986. Moisture loss as a prerequisitefor seedling growth in soybeanseeds (Glycine max L. Merr.).—J.exp. Bot. 37: 1663–1674. As soybean seeds [Glycine max (L.) Merr.] develop, they undergoa change in seed moisture. When excised prematurely from thepod and planted, seeds do not exhibit seedling growth until63 d after flowering (DAF) when the seed moisture has fallenbelow 60%. In contrast, seed germination (radicle protrusion)can occur when seeds as young as 35 DAF (68–79% moisture)are excised, but this germination docs not lead to comparableseedling growth frequencies unless seeds are first given a moistureloss treatment to artificially reduce their moisture below 60%.A moisture loss treatment applied at 35 DAF thus enables seedto undergo the transition from germination (cell expansion)to seedling growth (cell division and expansion) to the extentthat treated immature seed have a vigour index comparable toseeds matured on the plant (100%). The pattern of protein synthesisin vivo was examined in 35 DAF seed using [35S]-methionine incorporation.When moisture loss treatment was applied for 24 h to 35 DAFseeds, seeds synthesized several new polypeptides when comparedwith untreated seeds at the same developmental stage. The sameseed samples showed 0% seedling growth in the absence of moistureloss treatment and 80% seedling growth when the treatment hadbeen applied. Moisture loss from soybean seeds appears to bea prerequisite for the synthesis of new proteins which may bepart of the metabolic process or processes that allow the soybeanseed to undergo the transition from seed germination to seedlinggrowth. Key words: Moisture loss, germination/growth, soybean  相似文献   

9.
Hemoprotein derivatives of an abundant soybean (Glycine max Merr.) root nodule leghemoglobin, Lba, were studied for their modified spectral characteristics and physical properties. Three modified hemoprotein derivatives of Lba (Lbam1, Lbam2, and Lbam3) were purified by preparative isoelectric focusing. The ferric forms of these pigments were green and exhibited anomalous spectra in the visible region as compared to the Lba3+ forms. These modified pigments showed a hypochromic shift of 10 nm for the charge transfer absorption maximum; however, differences were not apparent in the Soret region. Upon binding with nicotinate, the [alpha] and [beta] bands were shifted significantly into the red region as compared to the Lba3+ nicotinate complex. The three Lbam fractions were reduced by dithionite or by NADH in the presence of riboflavin. Lbam2+ also bound nicotinate and displayed absorption spectra indistinguishable from those of Lba2+ nicotinate. In contrast to Lba2+, Lbam2+ displayed aberrant spectra when bound with either O2 or CO. These complexes exhibited a prominent charge transfer band at approximately 620 nm and failed to exhibit spectra characteristic of Lba2+O2 and Lba2+CO. The protein moiety of these modified pigments was intact because their tyrosine/tryptophan ratios and their amino acid compositions were identical with those of Lba, nor were differences observed in the peptide profiles resulting from trypsin digests of purified Lba and Lbams. Automated Edman degradation of selected peaks further confirmed the intactness of the protein backbone including the absence of deamination. Pyridine hemochromogen for heme from Lbams could be formed, and the spectra displayed distinct differences compared to those of Lba. A new peak at 580 nm and a loss of a peak at 480 nm were observed for all three Lbams.  相似文献   

10.
低磷对大豆主根伸长生长的影响   总被引:1,自引:0,他引:1  
文章采用卷纸培养和分层琼脂培养的方法,研究磷对大豆主根伸长影响的结果表明:低磷[0.2 μmol(KH2PO4)·L-1]显著促进大豆主根伸长,特别是延长大豆主根根尖至最新侧根间的距离;组织切片表明,低磷对主根伸长的促进主要是通过延迟主根伸长区的分化实现的,并且低磷对主根的促进作用不受亚磷酸盐的影响.琼脂分层培养的结果表明,在磷分布不均匀的条件下,低磷影响主根的仲长生长,上层或下层不施磷的大豆主根伸长均有增加.  相似文献   

11.
12.
13.
An approach to certification of soybean genotypes has been developed. The procedure employs three methods of DNA analysis based on polymerase chain reaction (PCR): PCR with arbitrary primers (AP PCR), simple sequence repeat polymorphism (SSRP) analysis, and inter-simple sequence repeat (ISSR) analysis. The approach to certification proposed may be used in both genetic and breeding research and seed production. A certificate form that reflects the unique characteristics of each cultivar studied is proposed. The results of molecular genetic analysis of allele distribution in genotypes of soybean from different ecological geographic zones permit estimation of the adaptive significance of individual alleles.  相似文献   

14.
Changes in soluble and cell wall bound peroxidases activities, phenylalanine ammonia-lyase activity and phenolic compounds and lignin contents in roots of calcium-treated soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated. Three-day-old soybean seedlings were cultivated in nutrient solution with or without 0.025–5.0 mM calcium for 24 h. In general, length and fresh and dry weights of roots increased, while activities of enzymes (soluble and cell-wall peroxidases and phenylalanine ammonia-lyase) and phenolic compounds and lignin contents decreased against calcium concentrations. In the absence of calcium, phenylalanine ammonia-lyase and peroxidases activities increased by accumulating phenolic compounds and lignin due to restricted growth of roots. Enhanced calcium supply reduced the production of phenolic compounds and lignification due to low phenylalanine ammonia-lyase and peroxidases activities, reinforcing the essential role of calcium to improve the soybean root growth.  相似文献   

15.
Cells of Bradyrhizobium japonicum were grown in media containing either 1.0 mM or 0.5 μM phosphorus. In growth pouch experiments, infection of the primary root of soybean (Glycine max (L.) Merr.) by B. japonicum USDA 31, 110, and 142 was significantly delayed when P-limited cells were applied to the root. In a greenhouse experiment, B. japonicum USDA 31, 110, 122, and 142 grown with sufficient and limiting P were used to inoculate soybeans which were grown with either 5 μM or 1 mM P nutrient solution. P-limited cells of USDA 31 and 110 formed significantly fewer nodules than did P-sufficient cells, but P-limited cells of USDA 122 and 142 formed more nodules than P-sufficient cells. The increase in nodule number by P-limited cells of USDA 142 resulted in significant increases in both nodule mass and shoot total N. In plants grown with 1 mM P, inoculation with P-limited cells of USDA 110 resulted in lower total and specific nitrogenase activities than did inoculation with P-sufficient cells. Nodule numbers, shoot dry weights, and total N and P were all higher in plants grown with 1 mM P, and plants inoculated with USDA 31 grew poorly relative to plants receiving strains USDA 110, 122, and 142. Although the effects of soybean P nutrition were more obvious than those of B. japonicum P nutrition, we feel that it is important to develop an awareness of the behavior of the bacterial symbiont under conditions of nutrient limitation similar to those found in many soils.  相似文献   

16.
Dehydration Injury in Germinating Soybean (Glycine max L. Merr.) Seeds   总被引:2,自引:3,他引:2  
The sensitivity of soybean (Glycine max L. Merr. cv Maple Arrow) seeds to dehydration changed during germination. Seeds were tolerant of dehydration to 10% moisture if dried at 6 hours of imbibition, but were susceptible to dehydration injury if dried at 36 hours of imbibition. Dehydration injury appeared as loss of germination, slower growth rates of isolated axes, hypocotyl and root curling, and altered membrane permeability. Increased electrolyte leakage due to dehydration treatment was observed only from isolated axes but not from cotyledons, suggesting that cotyledons are more tolerant of dehydration. The transition from a dehydration-tolerant to a dehydration-susceptible state coincided with radicle elongation. However, the prevention of cell elongation by osmotic treatment in polyethylene glycol (−6 bars) or imbibition in 20 micrograms per milliliter cycloheximide did not prevent the loss of dehydration tolerance suggesting that neither cell elongation nor cytoplasmic protein synthesis was responsible for the change in sensitivity of soybean seeds to dehydration. Furthermore, the rate of dehydration or rate of rehydration did not alter the response to the dehydration stress.  相似文献   

17.
Photosynthetic rate, ribulose 1,5-bisphosphate carboxylase activity, specific leaf weight, and leaf concentrations of carbohydrates, proteins, chlorophyll, and inorganic phosphate were determined periodically from midbloom until maturity in leaves of soybean plants (Glycine max L., var. Hodgson) from which reproductive and vegetative sinks had been removed 32 hours before measurement, or continuously since midbloom.

Leaf photosynthesis, measured in the top of the canopy, was partially inhibited by both sink removal treatments. This inhibition was of constant magnitude from midbloom until maturity.

Leaf photosynthesis in the top of the canopy declined from midbloom until maturity in the control as well as in the desinked plants. The decline in photosynthesis was gradual at first, but later became more abrupt. The photosynthetic decline was equally evident in the yellowing leaves of control plants and in the dark green leaves of the continuously desinked plants.

Neither the inhibition of photosynthesis by sink removal nor the decline in photosynthetic rate with time was clearly related to any of the measured traits.

  相似文献   

18.
Adenylates (ATP, ADP, and AMP) may play a central role in the regulation of the O2-limited C and N metabolism of soybean nodules. To be able to interpret measurements of adenylate levels in whole nodules and to appreciate the significance of observed changes in adenylates associated with changes in O2-limited metabolism, methods were developed for measuring in vivo levels of adenylate pools in the cortex, plant central zone, and bacteroid fractions of soybean (Glycine max L. Merr cv Maple Arrow x Bradyrhizobium japonicum strain USDA 16) nodules. Intact nodulated roots were either frozen in situ by flushing with prechilled Freon-113(-156[deg]C) or by rapidly (<1 s) uprooting plants and plunging them into liquid N2. The adenylate energy charge (AEC = [ATP + 0.5 x ADP]/[ATP + ADP + AMP]) of whole-nodule tissue (0.65 [plus or minus] 0.01, n = 4) was low compared to that of subtending roots (0.80 [plus or minus] 0.03, n = 4), a finding indicative of hypoxic metabolism in nodules. The cortex and central zone tissues were dissected apart in lyophilized nodules, and AEC values were 0.84 [plus or minus] 0.04 and 0.61 [plus or minus] 0.03, respectively. Although the total adenylate pool in the lyophilized nodules was only 41% of that measured in hydrated tissues, the AEC values were similar, and the lyophilized nodules were assumed to provide useful material for assessing adenylate distribution. The nodule cortex contained 4.4% of whole-nodule adenylates, with 95.6% being located in the central zone. Aqueous fractionation of bacteroids from the plant fraction of whole nodules and the use of marker enzymes or compounds to correct for recovery of bacteroids and cross-contamination of the bacteroid and plant fractions resulted in estimates that 36.2% of the total adenylate pool was in bacteroids, and 59.4% was in the plant fraction of the central zone. These are the first quantitative assessments of adenylate distribution in the plant and bacteroid fractions of legume nodules. These estimates were combined with theoretical calculations of rates of ATP consumption in the cortex (9.5 nmol g-1 fresh weight of nodule s-1), plant central zone (38 nmol g-1 fresh weight of nodule s-1), and bacteroids (62 nmol g-1 fresh weight of nodule s-1) of soybean nodules to estimate the time constants for turnover of the total adenylate pool and the ATP pool within each nodule fraction. The low values for time constant (1.6-5.8 s for total adenylate, 0.9-2.5 s for ATP only) in each fraction reflect the high metabolic activity of soybean nodules and provide a background for further studies of the role of adenylates in O2-limited nodule metabolism.  相似文献   

19.
Factors Affecting Shedding of Flowers in Soybean (Glycine max (L.) Merrill)   总被引:1,自引:0,他引:1  
Flower shedding in soybean, Glycine max (L.) Merrill, was studiedusing cultivar ‘Clark’, isoline E1t, which has relativelylong racemes for convenient identification and observation ofindividual flowers. On each raceme studied, pod set was greatestat the proximal (basal) positions, whereas shedding was greatestat the most distal positions. When proximal flowers were removedas they reached anthesis, pod set increased at the more distalpositions. Pod set was increased in some instances by applicationof water directly to the ovaries as a drop in the calyx cup.Peroxidase activity changed in parallel with ovary development,increasing rapidly in growing pods but not in shedding flowers.Increases in flower peroxidase was mainly in ovary walls. Flowerstaken at or near anthesis from positions with high percent podset could be grown in vitro with especially good ovary enlargement,whereas ovaries in flowers taken from positions of low pod setdid not enlarge in culture. Unidentified substances were extracted from young pods which,when incorporated into lanolin and tested in an in situ bioassay,could mimic the effect of proximal flowers in inducing sheddingof distal flowers. Indole-3-acetic acid resembled the extractedmaterials in inducing shedding, but differed by eliciting side-effectsthat extracts did not. The growth substances abscisic acid,gibberellic acid, and benzyladenine did not promote sheddingin the in situ test. The evidence was taken to indicate that soybean flower sheddingis induced in distal flowers by substances from the more proximal,fertilized ovaries, and that this is possibly due to interferencewith some of the intense metabolic changes that follow pollinationand fertilization.  相似文献   

20.
The rates of sulphate transport into intact and excised rootsof soybean (Glycine max L.) were not significantly differentin the first hour and were maximal at pH 7. However, intactroots accumulated four times as much sulphate as excised rootsin 24 h, because of a marked reduction in the rate of transportby excised roots. The continued high rates of transport intointact roots were observed in plants kept in the light, andobserved in darkened plants growing in 1 per cent sucrose. Similarly,sulphate accumulation by excised roots was stimulated 2-foldby 1 per cent sucrose. The characteristics of sulphate accumulation by roots were notuseful in predicting sulphate translocation to the leaves. Transportto the leaves was maximal at pH 2–3, was almost totallylight-dependent and was not enhanced by growing plants in sucrose. Sulphate transport, Glycine max L., soybean, excised roots  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号