首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 953 毫秒
1.
Cofilin是肌动蛋白相关蛋白,对肌动蛋白动力学特性的调节很重要。近年发现Cofilin活化与肿瘤细胞的恶性侵袭性质有关。Cofilin的局部激活可以诱导片状伪足的形成,并影响肿瘤细胞运动的方向,从而增强肿瘤细胞的运动和迁移;抑制Cofilin的活性可以减少肿瘤细胞的运动和迁移。本文对Cofilin的结构、功能、调控机制和与肿瘤的关系进行综述。  相似文献   

2.
Cofilin与肿瘤     
杨邦敏  姜浩  苏琦 《生物磁学》2012,(3):597-600
Cofilin是肌动蛋白相关蛋白,对肌动蛋白动力学特性的调节很重要。近年发现Cofilin活化与肿瘤细胞的恶性侵袭性质有关。Cofilin的局部激活可以诱导片状伪足的形成,并影响肿瘤细胞运动的方向,从而增强肿瘤细胞的运动和迁移;抑制Cofilin的活性可以减少肿瘤细胞的运动和迁移。本文对Cofilin的结构、功能、调控机制和与肿瘤的关系进行综述。  相似文献   

3.
细胞运动迁移广泛存在于各种病理生理过程中,如胚胎的发育、损伤修复、免疫应答、肿瘤转移。接触性抑制作为与细胞运动迁移有关的机制之一,表现为细胞在运动过程中,与其它的细胞发生了接触后,将其伪足缩回,并改变运动的方向。更重要的是,细胞间接触性抑制的丧失是恶性肿瘤发生转移很重要的一步。该文就接触性抑制是如何发生及其分子机制进行综述。  相似文献   

4.
Angiomotin(AMOT)是一种血管抑制素结合蛋白,AMOT在血管内皮细胞的迁移、紧密连接和管状形成等方面起着重要调控作用。AMOT及其同源家族蛋白AMOTL1和AMOTL2可能与Hippo信号通路的下游效应分子YAP相互作用来参与调控肿瘤细胞的生长。在乳腺癌、前列腺癌等癌症中,AMOT能够增加YAP进入细胞核的水平从而促进癌细胞的增殖和迁移;但在胶质母细胞瘤、肺癌等癌细胞中,AMOT将YAP滞留在细胞质或紧密连接处,从而抑制YAP的活性。另外,AMOT也可以促进Hippo信号通路中核心激酶LATS来发挥抑制肿瘤细胞增殖的作用。AMOT在肿瘤细胞生长中发挥的不同作用还需要更深入的研究,现对AMOT在癌症中的调控作用及在Hippo信号通路中的调控机制等方面的研究进展进行综述。  相似文献   

5.
焦点粘着激酶的研究进展   总被引:2,自引:0,他引:2  
焦点粘着激酶是依赖于整合素的细胞信号转导通路的基础性信号传递分子.通过磷酸化酪氨酸位点和富脯氨酸序列,活化的焦点粘着激酶与细胞骨架蛋白、Src族激酶、磷酸肌醇-3激酶、Graf以及多种衔接子蛋白相互作用,调节细胞的粘附、迁移、增殖和分化.  相似文献   

6.
Rho小G蛋白作为一个信号分子家族具有多样化的功能, 可以调节细胞骨架重排 、细胞迁移、细胞极性、基因表达、细胞周期调控等. Rho小G蛋白家族对细胞周期 调控的研究主要集中在其对于有丝分裂期细胞的调节作用,包括调节有丝分裂期前 期细胞趋圆化、后期染色体排列及收缩环的收缩作用.近期的研究显示,Rho小G蛋白及其效应分子对于细胞周期G1、S、G2期的调控主要是通过影响细胞周期的正调控因子细胞周期蛋白D1 (cyclin D1) 和负调控因子细胞周期蛋白依赖型激酶相互作用蛋白1及细胞周期蛋白依赖型激酶抑制蛋白27 (p21cip1/p27kip1) 进行的.本文总结了Rho小G蛋白及其效应分子在细胞周期调控,尤其是对G1/S期调控的研究进展,并简要阐述了Rho小G蛋白介导的细胞周期调控异常与癌症发生的关系.  相似文献   

7.
乳腺癌是女性最好发的恶性肿瘤之一,常规治疗方法虽取得了一定的疗效,但仍存在局限性。细胞分裂周期蛋白42(cell division cycle 42,Cdc42)是一种Rho家族蛋白的小GTP酶,可与GTP结合而被激活,进一步调控细胞骨架变化、极性建立、运动和迁移等各种生理进程。越来越多的研究表明,Cdc42在乳腺癌发生、发展过程中具有重要的调控作用,提示Cdc42有望作为一个新的治疗靶点应用到乳腺癌临床治疗中。该文总结最新的研究成果,探讨Cdc42在乳腺癌细胞极性建立、伪足形成中的作用,同时阐述Cdc42调控乳腺癌细胞侵袭、迁移和远处转移的具体分子机制以及相关的信号通路与乳腺癌演进的密切联系,并提出针对Cdc42的靶向治疗方法,为乳腺癌的治疗提供了新思路。  相似文献   

8.
黏着斑激酶与细胞迁移   总被引:2,自引:0,他引:2  
细胞迁移过程始于细胞前端板状伪足的形成、外周黏附的建立、细胞体的收缩和尾部的解离.黏着斑激酶是一种非受体酪氨酸蛋白激酶,通过其激酶活性和"脚手架"的功能在细胞迁移的各个过程中发挥关键作用.现重点介绍黏着斑激酶介导的信号转导通路及其在调控细胞迁移方面的研究进展.  相似文献   

9.
PI3K信号通路通过Skp2、p27调节肝癌细胞的增殖   总被引:2,自引:0,他引:2  
探讨磷脂酰肌醇3-激酶(PI3K)信号通路调节肝癌细胞增殖的机制.用LY294002特异性阻断PI3K信号通路后,人肝癌细胞(SMMC-7721)的增殖明显被抑制.RT-PCR及蛋白质印迹结果显示,LY294002增加了p27蛋白的表达,但不影响p27的mRNA表达.在LY294002处理的细胞中转入p27的RNAi质粒以干扰p27蛋白的表达后,肝癌细胞的增殖能力可部分恢复.放线菌酮(Chx)处理实验表明,阻断PI3K信号通路使p27蛋白的半衰期延长,稳定性增加.进一步研究发现,LY294002可抑制介导p27蛋白降解的关键分子Skp2的mRNA表达,还可缩短Skp2蛋白的半衰期,降低Skp2蛋白的稳定性.但在SMMC-7721中分别转染PI3K下游重要靶分子Akt的持续激活和失活突变体,却并不影响p27蛋白的表达.这些结果表明,PI3K信号通路在转录及翻译后水平调节Skp2的表达而影响p27蛋白的降解,从而调节肝癌细胞的增殖,但Akt并没有参与这种调节.  相似文献   

10.
细胞骨架是真核细胞中的蛋白纤维网络结构,不仅与保持细胞形态结构有关,而且影响细胞黏附和细胞运动.NOR1是从鼻咽癌中克隆得到的新基因,在鼻咽癌组织和细胞系中表达下调.本研究建立了NOR1稳定表达的鼻咽癌5-8F细胞系.过表达NOR1引起高转移性鼻咽癌5-8F细胞形态改变,抑制片状伪足形成、细胞表面积缩小、细胞聚集性增强.扫描电镜检测发现,NOR1抑制了5-8F细胞膜微绒毛的数量,引起细胞膜表面改变.细胞骨架染色发现,NOR1过表达导致5-8F细胞actin骨架连续性破坏,应力纤维增加.Realtime RT-PCR检测发现,NOR1引起5-8F细胞Wnt/β-catenin信号通路分子Wnt5A受体FZD5、FZD7表达下调,抑制了β-catenin蛋白入核.提示NOR1抑制Wnt/β-catenin信号通路激活,破坏细胞骨架连续性,抑制细胞膜微绒毛与伪足形成.  相似文献   

11.
The neural cell adhesion molecule (NCAM), a key member of the immunoglobulin-like CAM family, was reported to regulate the migration of bone marrow-derived mesenchymal stem cells (BMSCs). However, the detailed cellular behaviors including lamellipodia formation in the initial step of directional migration remain largely unknown. In the present study, we reported that NCAM affects the lamellipodia formation of BMSCs. Using BMSCs from Ncam knockout mice we found that Ncam deficiency significantly impaired the migration and the directional lamellipodia formation of BMSCs. Further studies revealed that Ncam knockout decreased the activity of cofilin, an actin-cleaving protein, which was involved in directional protrusions. To explore the molecular mechanisms involved, we examined protein tyrosine phosphorylation levels in Ncam knockout BMSCs by phosphotyrosine peptide array analyses, and found that the tyrosine phosphorylation level of β1 integrin, a protein upstream of cofilin, was greatly upregulated in Ncam-deficient BMSCs. Notably, by blocking the function of β1 integrin with RGD peptide or ROCK inhibitor, the cofilin activity and directional lamellipodia formation of Ncam knockout BMSCs could be rescued. Finally, we found that the effect of NCAM on tyrosine phosphorylation of β1 integrin was independent of the fibroblast growth factor receptor. These results indicated that NCAM regulates directional lamellipodia formation of BMSCs through β1 integrin signal-mediated cofilin activity.  相似文献   

12.
Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway.  相似文献   

13.
Colorectal cancer (CRC) is the third most common cancer in the United States. The exact mechanism of CRC cells metastasis is poorly understood. Actin polymerization is thought to be an initial step in the cancer cell motility cycle which drives the formation of cell protrusions and defines the direction of migration. Cofilin, a significant actin-regulating molecule, regulates the migration of cancer cells by the formation of lamellipodia and filopodia, however, little is known about the upstream regulation of cofilin. In this study, the effect of atypical Protein Kinase C (atypical PKC) on Cofilin activity in CRC was studied. This study demonstrates that the atypical PKC inhibition impedes the metastasis of CRC cells by increasing phospho-Cofilin (S3) and changing actin organization.  相似文献   

14.
During epithelial cell migration, membrane ruffles can be visualized by phase contrast microscopy as dark waves arising at the leading edge of lamellipodia that move centripetally toward the main cell body. Despite the common use of the term membrane ruffles, their structure, molecular composition, and the mechanisms leading to their formation remained largely unknown. We show here that membrane ruffles differ from the underlying cell lamella by more densely packed bundles of actin filaments that are enriched in the actin cross-linkers filamin and ezrin, pointing to a specific bundling process based on these cross-linkers. The accumulation of phosphorylated, that is, inactivated, cofilin in membrane ruffles suggests that they are compartments of inhibited actin filament turnover. High Rac1 and low RhoA activities were found under conditions of suboptimal integrin-ligand interaction correlating with low lamellipodia persistence, inefficient migration, and high ruffling rates. Based on these findings, we define membrane ruffles as distinct compartments of specific composition that form as a consequence of inefficient lamellipodia adhesion.  相似文献   

15.
The driving force behind cell motility is the actin cytoskeleton. Filopodia and lamellipodia are formed by the polymerization and extension of actin filaments towards the cell membrane. This polymerization at the barbed end of the filament is balanced by depolymerization at the pointed end, recycling the actin in a 'treadmilling' process. One protein involved in this process is cofilin/actin-depolymerizing factor (ADF), which can depolymerize actin filaments, allowing treadmilling to occur at an accelerated rate. Cofilin/ADF is an actin-binding protein that is required for actin-filament disassembly, cytokinesis and the organization of muscle actin filaments. There is also evidence that cofilin/ADF enhances cell motility, although a direct requirement in vivo has not yet been shown. Here we show that Drosophila cofilin/ADF, which is encoded by the twinstar (tsr) gene, promotes cell movements during ovary development and oogenesis. During larval development, cofilin/ADF is required for the cell rearrangement needed for formation of terminal filaments, stacks of somatic cells that are important for the initiation of ovarioles. It is also required for the migration of border cells during oogenesis. These results show that cofilin/ADF is an important regulator of actin-based cell motility during Drosophila development.  相似文献   

16.
The actin severing protein cofilin is essential for directed cell migration and chemotaxis, in many cell types and is also important for tumor cell invasion during metastasis. Through its severing activity, cofilin increases the number of free barbed ends to initiate actin polymerization for actin‐based protrusion in two distinct subcellular compartments in invasive tumor cells: lamellipodia and invadopodia. Cofilin severing activity is tightly regulated and multiple mechanisms are utilized to regulate cofilin activity. In this prospect, we have grouped the primary on/off regulation into two broad categories, both of which are important for inhibiting cofilin from binding to F‐actin or G‐actin: (1) Blocking cofilin activity by the binding of cofilin to either PI(4,5)P2 at lamellipodia, or cortactin at invadopodia. (2) Blocking cofilin's ability to bind to actin via serine phosphorylation. Although the literature suggests that these cofilin regulatory mechanisms may be cell‐type dependent, we propose the existence of a common cofilin activity cycle in which both operate. In this common cycle, the mechanism used to initiate cofilin activity is determined by the starting point in the cycle in a given subcellular compartment. J. Cell. Biochem. 108: 1252–1262, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Regulation of the actin cytoskeleton in cancer cell migration and invasion   总被引:1,自引:0,他引:1  
Malignant cancer cells utilize their intrinsic migratory ability to invade adjacent tissues and the vasculature, and ultimately to metastasize. Cell migration is the sum of multi-step processes initiated by the formation of membrane protrusions in response to migratory and chemotactic stimuli. The driving force for membrane protrusion is localized polymerization of submembrane actin filaments. Recently, several studies revealed that molecules that link migratory signals to the actin cytoskeleton are upregulated in invasive and metastatic cancer cells. In this review, we summarize recent progress on molecular mechanisms of formation of invasive protrusions used by tumor cells, such as lamellipodia and invadopodia, with regard to the functions of key regulatory proteins of the actin cytoskeleton; WASP family proteins, Arp2/3 complex, LIM-kinase, cofilin, and cortactin.  相似文献   

18.
Memo mediates ErbB2-driven cell motility   总被引:3,自引:0,他引:3  
Clinical studies have revealed that cancer patients whose tumours have increased ErbB2 expression tend to have more aggressive, metastatic disease, which is associated with parameters predicting a poor outcome. The molecular basis underlying ErbB2-dependent cell motility and metastases formation, however, still remains poorly understood. In this study, we show that activation of a set of signalling molecules, including MAPK, phosphatidylinositol-3-OH kinase (PI(3)K) and Src, is required for Neu/ErbB2-dependent lamellipodia formation and for motility of breast carcinoma cells. Stimulation of these molecules, however, failed to induce efficient cell migration in the absence of Neu/ErbB2 phosphorylation at Tyr 1201 or Tyr 1227. We describe a novel molecule, Memo (mediator of ErbB2-driven cell motility), that interacts with a phospho-Tyr 1227-containing peptide, most probably through the Shc adaptor protein. After Neu/ErbB2 activation, Memo-defective cells form actin fibres and grow lamellipodia, but fail to extend microtubules towards the cell cortex. Our data suggest that Memo controls cell migration by relaying extracellular chemotactic signals to the microtubule cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号