首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effect of cadmium (Cd) on cell viability and its accumulation in Bradyrhizobium spp. (peanut microsymbionts) as well as the role of glutathione (GSH) in the tolerance to this metal were investigated. A reference strain recommended as peanut inoculant (Bradyrhizobium sp. SEMIA6144) grew up to 10 μM Cd meanwhile a GSH-deficient mutant strain (Bradyrhizobium sp. SEMIA6144-S7Z) was unable to grow at this concentration. Two native peanut isolates obtained from Córdoba soils (Bradyrhizobium sp. NLH25 and Bradyrhizobium sp. NOD31) tolerated up to 30 μM Cd. The analysis of Cd content showed that Bradyrhizobium sp. SEMIA6144 accumulated a high amount of this metal, but a considerable inhibition of growth was observed compared to tolerant strains at 10 μM Cd. At this concentration, the intracellular GSH content of all the Bradyrhizobium sp. strains was not modified in comparison to control conditions. However, at 30 μM Cd, the intracellular GSH content significantly increased in Bradyrhizobium sp. strains NLH25 and NOD31. Thus, the distinct response of each Bradyrhizobium sp. strain to Cd reveals that, even in closely related lineages, there are strain-specific variations influencing the levels of tolerance to this metal. Indeed, the native peanut isolates tolerated higher Cd concentration than the reference strain, possibly due to an increase in GSH levels which could act as a detoxifying agent.  相似文献   

2.
The effects of saline and osmotic stress on four peanut rhizobia, plant growth and symbiotic N2-fixation inArachis hypogaea were studied. Abiotic stress was applied by adding either 100 mM NaCl or 20 mM PEG6000. At the rhizobial level,Bradyrhizobium ATCC10317 and TAL1000 showed stronger tolerance to stress than TAL1371 and SEMIA6144. The effect of salinity on the bacterium-plant association was studied by using the variety Blanco Manfredi M68. In the absence of stresses, all the strains induced a significantly higher number of nodules on the roots, although TAL1371 and SEMIA6144 were more effective. Both stresses affected the interaction process, while TALl371 was the best partner.  相似文献   

3.
In the present study, the effect of acid stress on ammonium assimilation in Bradyrhizobium sp. SEMIA 6144 (Arachis hypogaea L.) microsymbiont was analyzed. The bacterial growth rate was decreased by 50%, and a significant increase in intracellular glutamate concentration was detected when the strain grew at acid pH (5.5). Assays of the enzymes involved in glutamate synthesis showed increased activities of glutamine synthetase (GS) and glutamate synthase (NADPH-GOGAT) under acid stress condition. This would support the contention that the GS/NADPH-GOGAT pathway contributes to the increase of glutamate synthesis as a compatible solute in response to acid stress.  相似文献   

4.
We previously showed the important role of glutathione (GSH) in the protection mechanism against different stresses, such as acid pH, saline, and oxidative stress, using a GSH-deficient mutant of Bradyrhizobium sp. (peanut microsymbiont). In this work, we studied the role of GSH in the protection mechanism against methylglyoxal (MG) toxicity. MG is a naturally occurring toxic electrophilic compound, and it has been shown that GSH is involved in the detoxification of MG in Escherichia coli. One recognized component of this detoxification process is the formation of a GSH adduct, which in turn transports potassium (K+) out of bacterial cells. Our results showed that growth of wild-type strain Bradyrhizobium sp. SEMIA 6144 was not affected at a MG concentration of 0.5 mM in the yeast extract–mannitol culture medium. However, a reduction of growth, at concentrations of 1.5 and 2.5 mM MG and reaching complete growth inhibition at 3.0 mM MG, was observed. In wild-type strain, intracellular GSH content decreased, and intracellular K+ content was unchanged, whereas GSH-deficient mutant SEMIA 6144-S7Z was unable to grow at 1.5 mM MG. The addition of external GSH to the incubation medium did not restore the growth rate either in wild-type or mutant strains. Our findings showed that GSH has not proven to be protective against the cell-growth inhibiting activity of MG. Therefore, the response of Bradyrhizobium sp. growth to MG is different from that reported in E. coli and other Gram-negative bacteria.  相似文献   

5.
Two contrasting maize (Zea mays L.) cultivars, i.e., Giza 2 (salt tolerant) and Trihybrid 321 (salt sensitive), were grown hydroponically to study NaCl effect (100 mM) on root plasma membrane (PM) lipid and protein alterations. The PM total sterols of Trihybrid 321 were decreased while that of Giza 2 was increased in response to salt. Salt imposition had no significant effect on PM total glycolipids and proteins of both cultivars. The PM total phospholipids were increased in Trihybrid 321 but it did not change significantly in Giza 2 after salinity stress. Molecular percentage of PM phospholipids and fatty acids of both cultivars was different in absence (0 mM) and presence (100 mM) of salt. The most abundant phospholipids in untreated Trihybrid 321 PM were phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), which changed into PG, PS, phosphatidylinositol (PI) and PC after salt treatment. However, the dominant phospholipids of the control PM of Giza 2 were PC, PE, PS and PG, which changed into PG, PE, PS and diphosphatidylglycerol (DPG) after salt imposition. Over 60% of the total fatty acids were saturated in control and salinized PM of both cultivars, which was increased after salt stress. The predominant fatty acid in the control and salinized PM of Trihybrid 321 was C18:1 and C17:0, respectively. However, in control and treated PM of Giza 2, the predominant fatty acid was C17:0 and C20:0, respectively. Qualitative and quantitative differences in PM protein patterns were found in both cultivars with and without salt. PM lipid changes enhanced membrane integrity, reflected in different ion accumulation (Mansour et al. 2005), and hence salt tolerance of Giza 2.  相似文献   

6.
In the present study, attempts were made to analyze the effect of co-inoculation with an efficient phosphate solubilising native isolate Pantoea sp J49 and the symbiotic nitrogen fixing Bradyrhizobium sp SEMIA 6144 strain on Arachis hypogaea L. plants growth. Single and co-inoculation of peanut plants growing in plastic pots containing soil with low P content were developed. Plants were harvested at R1 and R4 growth stages and were analyzed in different growth parameters. Survival of strain Pantoea sp J49 was analyzed in soil samples and in root tissues. Plants inoculated only with Pantoea sp J49 showed the highest shoot and root weight in both reproductive growth stages evaluated. Plants co-inoculated with this strain and Bradyrhizobium sp SEMIA 6144 showed increase in aerial dry weight at R1 stage. Survival assays demonstrated that Pantoea sp J49 survives not only in the peanut rhizosphere but also inside plant tissues, including nodules formed when it was co-inoculated with Bradyrhizobium sp SEMIA 6144. Results obtained in this study confirm the great potential of the native Pantoea sp J49 isolate in the promotion of peanut plant growth, probably related with its capacity to solubilise phosphate.  相似文献   

7.
Drought is one of the environmental factors that most affects peanut cultivation in semi-arid regions, resulting in economic losses to growers. However, growth promoting bacteria are able to reduce water deficit damage in some plant species. In this context, this study aimed to evaluate the interaction of Bradyrhizobium strains reducing water stress effects on peanut genotypes by antioxidant enzymes activities, leaf gas exchanges and vegetative growth, as well as to determine the taxonomic positioning of strain ESA 123. The 16S rRNA gene of ESA 123 was amplified by PCR and sequenced by dideoxy Sanger sequencing method. An experiment was performed in greenhouse with three peanut genotypes (BRS Havana, CNPA 76 AM and 2012-4), two Bradyrhizobium strains (SEMIA 6144 and ESA 123), a mineral source of N and an absolute control (without N) under two water regimes (with and without irrigation). Seeds of peanut were sown and the plants were grown until 30 days after emergence. On the 20th day, the water deficit plants group had their irrigation suspended for 10 days. At in silico analyzes, ESA 123 presented 98.97% similarity with the type strain of B. kavangense. Leaf gas exchange was affected by water deficit; as well as alteration of antioxidant activities and reduction of vegetative growth variables. However, some plants inoculated with SEMIA 6144 and ESA 123 strains presented lower reductions and increment of some evaluated variables, mainly the ones inoculated with the ESA 123 strain, Bradyrhizobium sp. from the semi-arid region of Northeast Brazil. This data suggests beneficial effects of the peanut-Bradyrhizobium interaction in a water stress condition, specially with the ESA 123 strain.  相似文献   

8.
In this study, the effects of cadmium (Cd) on cell morphology and antioxidant enzyme activities as well as the distribution of the metal in different cell compartments in Bradyrhizobium sp. strains were investigated. These strains were previously classified as sensitive (Bradyrhizobium sp. SEMIA 6144) and tolerant (Bradyrhizobium sp. NLH25) to Cd. Transmission electron micrographs showed large electron-translucent inclusions in the sensitive strain and electron-dense bodies in the tolerant strain, when exposed to Cd. Analysis of Cd distribution revealed that it was mainly bounded to cell wall in both strains. Antioxidant enzyme activities were significantly different in each strain. Only the tolerant strain was able to maintain a glutathione/oxidized glutathione (GSH/GSSG) ratio by an increase of GSH reductase (GR) and GSH peroxidase (GPX) enzyme activities. GSH S-transferase (GST) and catalase (CAT) activities were drastically inhibited in both strains while superoxide dismutase (SOD) showed a significant decrease only in the sensitive strain. In conclusion, our findings suggest that GSH content and its related enzymes are involved in the Bradyrhizobium sp. tolerance to Cd contributing to the cellular redox balance.  相似文献   

9.
Major components of polar lipids of halophilic phototrophic Ectothiorhodospira species were PG, CL, PC and PE. PA was only present in minor amounts. According to 14C-incorporation, polar lipids approximated to 75%–93% of the total lipid carbon. With increasing salinity, a strong increase in the portion of PG and a decrease in that of PE (especially in Ectothiorhodospira mobilis BN 9903) and CL (especially in E. halophila strains) were observed. Moreover, there was a significant increase in the excess negative charges of phospholipids upon increasing medium salinity. This increase was most dramatic in the slightly halophilic E. mobilis BN 9903, but quantitatively less important in both strains of E. halophila which had, however, a higher percentage of negative charges of their lipids. During salt-shift experiments, E. halophila BN 9630 responded to suddenly increased salinity by promoting the biosynthesis of PG and decreasing that of PC, CL and PE. Upon dilution stress, responses were reversed and resulted in a strong increase in PE biosynthesis. The effects of lipid charges and bilayer forming forces in stabilizing the membranes of Ectothiorhodospira species during salt stress are discussed.Abbreviations PC phosphatidylcholine - PG, PG-1, PG-2 phosphatidylglycerol - CL, CL-1, Cl-2 cardiolipin - PE phosphatidylethanol-amine - PA phosphatidic acid - NL nonpolar lipids - ori origin - TLC thin layer chromatography  相似文献   

10.
This work presents a comparative study of proton transfer activity (PTA) of two cationic (+6) antimicrobial peptides, β‐structural arenicin‐2 and α‐helical melittin. A new approach was proposed for the detection of passive proton transfer by using proteoliposomes containing bacteriorhodopsin, which creates a small light‐induced electrochemical proton gradient ?ΔpH. Addition of several nanomoles of the peptides lowers ?ΔpH that is proximately indicative of the pore formation. The quantitative analysis of sigmoidal dependences of ?pH on the peptides concentration was carried out using liposomes prepared from PC, PC/PE, PC/PE/PI and PC/PG. Substitution of PC‐containing liposomes with PE‐containing ones, having negative spontaneous curvature, reduced the PTA of α‐helical melittin and increased that of β‐structural arenicin‐2. This result indicates an essential difference in the pore formation by these peptides. Further increase of PTA in response to arenicin‐2 (in contrast to melittin) was observed in the liposomes prepared from PC/PE/PI. The data analysis leads to the conclusion that PTA is influenced by (i) efficiency of the pore assemblage, which depends on the structure of pore‐forming peptides, and the spontaneous curvature of lipids and (ii) the presence of mobile protons in the polar head groups of phospholipids. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The fatty acid (FA) composition of the main membrane phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), was investigated in the muscle, gills, and liver of the small-scaled redfin Tribolodon brandti (Dybowskii, 1872) at different temperatures under natural and experimental conditions. It was established that a water temperature decrease in the natural habitat was accompanied by an increase in polyunsaturated fatty acid contents and the unsaturation index, mainly at the expense of FAs of the ω3 series (20:5ω3 and 22:6ω3), and by a decrease in saturated fatty acid levels in PC and PE. A similar, but less pronounced tendency was revealed in experiments with a rapid lowering of water temperature. These findings suggest the weak adaptation ability of the small-scaled redfin to a drastic shift of environmental temperature. Temperature changes produced the greatest alterations in the FA composition of phospholipids in the liver and the smallest changes occurred in muscle tissue.  相似文献   

12.
The phospholipid fatty acid composition of Porphyridium purpureum on a solid medium was studied in the presence of sodium dodecyl sulphate (SDS) and cetyl trimethylammonium bromide (CTAB). The most common fatty acids in phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) were palmitic (16:0), stearic (18: 0), linoleic (18:2ω 6), arachidonic (20:4ω 6) and eicosapentaenoic (20:5ω 3) acids, 20:4ω 6 being very abundant. In phosphatidyl glycerol (PG) the most common acids were 16:0, trans-hexadecenoic acid (tr 16:1ω 13), oleic acid (18:1) and 20:4ω 6. Both detergents increased the saturation grade of PC and PE by decreasing the relative amount of the polyunsaturated acids, especially 20:4ω 6. A corresponding increase in the amounts of saturated acids was observed in PC and PE. The changes in PG fatty acid composition were not very significant: a slight increase was observed in the amounts of 16:0 and tr 16:1ω 13 , with a corresponding decrease in the amounts of 20:4ω 6 and 20:5ω 3. Both detergents decreased the PC/PE and the (PC + PE)/PG ratios very markedly, most probably as a result of increases in the amounts of PE and PG. In the presence of CTAB the cells seemed to contain much more phospholipids than in the presence of SDS, perhaps as a result of the mucilage-precipitating effect of CTAB. The significance of the findings is discussed.  相似文献   

13.
We have investigated the response of two peanut cultivars (TEGUA and UTRE) with different growth habits and branching pattern structures to different nitrogen (N) sources, namely, N-fertilizer or N2 made available by symbiotic fixation, and analysed the pattern of nitrate reductase (NR) activity in these cultivars. Nitrate and amino acid contents were also examined under these growth conditions. In terms of nitrogen source, cv. TEGUA showed a better response to inoculation with Bradyrhizobium sp. SEMIA 6144 at 40 days after planting, while cv. UTRE responded better to N-fertilizer (5 mM KNO3). Both cultivars showed different patterns of NR activity in the analyzed plant organs (leaves, roots, and nodules), which were dependent on the N source. When nitrogen became available to the plant through symbiotic N2 fixation, the patterns of NR activity distribution were different in the two cultivars, with cv. TEGUA showing a higher NR activity in the nodules than in the leaves and roots, and cv. UTRE showing no difference in terms of NR activity among organs. The nitrate and amino acid contents showed a similar trend between the two cultivars, with the highest nitrate content in the leaves of fertilized plants and the highest amino acid content in the nodules. The high nitrate content of the leaves of cv. UTRE indicated the better response of this cultivar to N-fertilizer.  相似文献   

14.
This investigation was conducted to observe changes in the fatty acid distributions of glycolipids (GL) and phospholipids (PL) in cotyledons of soybean seeds which were germinated either in the dark or the light at 28°C for 8 days. The GL isolated from the total lipids of cotyledons at different germinating stages were : acyl sterylglycoside (ASG), monogalactosyl diglyceride (MGD), digalactosyl diglyceride (DGD) and sulfolipid (SL). The PL isolated from the same total lipids as described above were : diphosphatidyl glycerol (DPG), phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidyl glycerol (PG), phosphatidyl choline (PC) and phosphatidyl inositol (PI).

During germination of soybean seeds, the content of linoleic and linolenic acids in MGD or DGD was markedly higher than that of the other GL. The positional distribution of fatty acids in PE, PC and PI was shown in all PL, in which saturated fatty acids, especially palmitic acid, were highly concentrated in position 1 and unsaturated fatty acids, especially linoleic acid, mainly occupied position 2. A remarkable difference in the changing patterns of fatty acid composition, which depended on the germinating conditions tested, was observed between GL and PL. The changes in fatty acid composition of GL were more marked in the light-grown seedlings than in the dark-grown, whereas those of PL were more remarkable in the latter than in the former. Therefore, the positional distribution of fatty acids in PL was more evident in the light-grown seedlings than in the dark-grown ones.

These results suggest the metabolic fate of GL and PL in cotyledons of soybean seeds, probably owing to the differences in the two germinating conditions tested.  相似文献   

15.
Azospirillum-plant association is accompanied by biochemical changes in roots which, in turn, promote plant-growth and tolerance to water stress. To shed light on the possible factors underlying these effects, roots from Azospirillum brasilense Sp245-inoculated Triticum aestivum seedlings growing in darkness under osmotic stress were analyzed for phospholipid (PL) composition, fatty acid (FA) distribution profiles and degree of unsaturation of the major PL classes. Azospirillum inoculation diminished ion leakage and increased 2,3,5-tripheniltetrazolium reducing ability in roots of well irrigated and water-stressed wheat seedlings. Total root PL content remained unaltered in all treatments. Six PL classes were detected, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) comprising over 80% of the total. While water stress increased PC content and diminished that of PE, none of these changes were observed either under Azospirillum inoculation alone or when both treatments were combined. The major FAs found in both PC and PE were 16:0, 18:0, 18:1, 18:2, and 18:3. Higher PC and lower PE unsaturation than in well irrigated controls were observed in roots from Azospirillum-inoculated, water-stressed seedlings. Azospirillum inoculation could contribute to protect wheat seedlings from water stress through changes in the FA distribution profiles of PC and PE major root phospholipids.  相似文献   

16.
The phospholipid composition of Micrococcus denitrificans was unusual in that phosphatidyl choline (PC) was a major phospholipid (30.9%). Other phospholipids were phosphatidyl glycerol (PG, 52.4%), phosphatidyl ethanolamine (PE, 5.8%), an unknown phospholipid (5.3%), cardiolipin (CL, 3.2%), phosphatidyl dimethylethanolamine (PDME, 0.9%), phosphatidyl monomethylethanolamine (PMME, 0.6%), phosphatidyl serine (PS, 0.5%), and phosphatidic acid (0.4%). Kinetics of 32P incorporation suggested that PC was formed by the successive methylations of PE. Pulse-chase experiments with pulses of 32P or acetate-1-14C to exponentially growing cells showed loss of isotopes from PMME, PDME, PS, and CL with biphasic kinetics suggesting the same type of multiple pools of these lipids as proposed in other bacteria. The major phospholipids, PC, PG, and PE, were metabolically stable under these conditions. The fatty acids isolated from the complex lipids were also unusual in being a simple mixture of seven fatty acids with oleic acid representing 86% of the total. Few free fatty acids and no non-extractable fatty acids associated with the cell wall or membrane were found.  相似文献   

17.
Dalbergoids are typified by crack-entry symbiosis which is evidenced to be Nod Factor (NF)-independent in several Aeschynomene legumes. Natural symbionts of the dalbergoid legume Arachis hypogaea are always NF-producing, prompting us to check whether symbiosis in this legume could also be NF-independent. For this, we followed the symbiosis with two NF-containing bradyrhizobial strains – SEMIA6144, a natural symbiont of Arachis and ORS285, a versatile nodulator of Aeschynomene legumes, along with their corresponding nodulation (nod) mutants. Additionally, we investigated NF-deficient bradyrhizobia like BTAi1, a natural symbiont of Aeschynomene indica and the WBOS strains that were natural endophytes of Oryza sativa, collected from an Arachis-Oryza intercropped field. While SEMIA6144ΔnodC was non-nodulating, both ORS285 and ORS285ΔnodB could induce functional nodulation, although with lower efficiency than SEMIA6144. On the other hand, all the NF-deficient strains – BTAi1, WBOS2 and WBOS4 showed comparable nodulation with ORS285 indicating Arachis to harbour an NF-independent mechanism of symbiosis. Intriguingly, symbiosis in Arachis, irrespective of whether it was NF-dependent or independent, was always associated with the curling or branching of the rosette root hairs at the lateral root bases. Thus, despite being predominantly described as an NF-dependent legume, Arachis does retain a vestigial, less-efficient form of NF-independent symbiosis.  相似文献   

18.
All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the Nmethylated PE derivatives monomethyl PE and phosphatidylcholine (PC = trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non‐canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis.  相似文献   

19.
Panicle erectness (PE) is one of the most important traits for high-yielding japonica cultivars. Although several cultivars with PE trait have been developed and released for commercial production in China, there is little information on the inheritance of PE traits in rice. In the present study, 69 widely cultivated japonica cultivars and a double haploid (DH) population derived from a cross between a PE cultivar (Wuyunjing 8) and a drooping panicle cultivar (Nongken 57) were utilized to elucidate the mechanisms of PE formation and to map PE associated genes. Our data suggested that panicle length (PL) and plant height (PH) significantly affected panicle curvature (PC), with shorter PL and PH resulting in smaller PC and consequently more erect. A putative major gene was identified on chromosome 9 by molecular markers and bulk segregant analysis in DH population. In order to finely map the major gene, all simple sequence repeats (SSR) markers on chromosome 9 as well as 100 newly developed sequence-tagged site (STS) markers were used to construct a linkage group for quantitative trait locus (QTL) mapping. A major QTL, qPE9-1, between STS marker H90 and SSR marker RM5652, was detected, and accounted for 41.72% of PC variation with pleiotropic effect on PH and PL. another QTL, qPE9-2, was also found to be adjacent to qPE9-1. In addition, we found that H90, the nearest marker to qPE9-1, used for genotyping 38 cultivars with extremely erect and drooping panicles, segregated in agreement with PC, suggesting the H90 product was possibly part of the qPE9-1 gene or closely related to it. These data demonstrated that H90 could be used for marker-aided selection for the PE trait in breeding and in the cloning of qPE9-1.  相似文献   

20.
Lipid metabolites play an important role in understanding the stress physiology of Pyropia haitanensis, and can be used to facilitate development of stress‐resistant Pyropia cultivars. Therefore, in this study ultra performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC‐Q‐TOF‐MS) and gas chromatography–mass spectrometry (GC–MS) based metabolomics approaches were developed to screen the responses of lipid metabolites such as phospholipids, glycolipids, fatty acids and volatile organic compounds (VOCs) to different heat shock times. A total of 26 potential lipid biomarkers including Lyso‐monogalactosyldiacylglycerol (Lyso‐MGDG), Lyso‐digalactosyldiacylglycerol (Lyso‐DGDG), sulfoquinovosylmonoacylglycerols (SQMG), sulfoquinovosyldiacylglycerol (SQDG), diacylglyceryltrimethylhomoserine (DGTS), triacylglycerol (TAG), Lyso‐phosphatidicacid (Lyso‐PA), Lyso‐phosphatidylcholine (Lyso‐PC), Lyso‐phosphatidylethanolamine (Lyso‐PE), Lyso‐phosphatidylglycerol (Lyso‐PG), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylinositol phosphate (PIP) were identified, most of which responded to high temperature by reducing or increasing levels after stimulation for 1 h or 6 h. After times longer than 6 h, the levels of most lipids gradually recovered to the control group levels. Moreover, the balance of lipids and fatty acids transformation was disrupted. Overall, 11 total fatty acids (TFAs), 13 free fatty acids (FFAs) and 29 VOCs were identified during 0–72 h of high temperature stress. The FFAs, especially polyunsaturated C 20 fatty acids and VOCs, showed opposing change trends, indicating the transformation between C 20 fatty acids and VOCs. Overall, this study provides important insights into the metabolic variations of P. haitanensis under different heat shock time and the relationship between the conversion of lipids, fatty acids, and VOCs. The information provided herein will facilitate efficient development and improvement of Pyropia quality by producing cultivars resistant to high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号