首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Single pituitary gonadotrophs exhibit episodes of spontaneous fluctuations in cytoplasmic calcium concentration [( Ca2+]i) due to entry through voltage-sensitive calcium channels (VSCC) and show prominent agonist-induced oscillations in [Ca2+]i that are generated by periodic release of intracellular Ca2+. Gonadotropin releasing hormone (GnRH) elicited three types of Ca2+ responses: at low doses, subthreshold, with an increase in basal [Ca2+]i; at intermediate doses, oscillatory, with dose-dependent modulation of spiking frequency; and at high doses, biphasic, without oscillations. Elevation of [Ca2+]i or activation of protein kinase C (PKC) did not influence the frequency of agonist-induced [Ca2+]i spikes but caused dose-dependent reductions in amplitude for all types of Ca2+ response. Stimulation of transient Ca2+ spikes by GnRH was followed by inhibition of the spontaneous fluctuations. GnRH also reduced the ability of high extracellular K+ to promote Ca2+ influx through VSCC. Activation of PKC by phorbol esters stimulated Ca2+ influx in quiescent cells but inhibited influx when VSCC were already activated, either spontaneously or by high K+. In contrast to their biphasic actions on [Ca2+]i, phorbol esters exerted only stimulatory actions on gonadotropin release, even when Ca2+ influx was concomitantly reduced. However, pituitary cells had to be primed with an appropriate [Ca2+]i level before exocytosis could be amplified by PKC. In PKC-depleted cells, all actions of phorbol esters on Ca2+ entry and amplitude modulation, and on LH release, were abolished. GnRH-induced LH secretion was also significantly reduced, especially the plateau phase of the response. These data indicate that Ca2+ and PKC serve as interacting signals during the cascade of cellular events triggered by agonist stimulation, in which Ca2+ turns cell responses on or off, and PKC amplifies the positive and negative effects of Ca2+.  相似文献   

2.
The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of gonadotropin releasing hormone (GnRH) and phorbol esters in cultured pituitary cells. During incubation in normal medium, GnRH stimulated LH release with an ED50 of 0.35 nM. Incubation in Ca2+-deficient medium (Ca2+-free, 10 microM) substantially decreased but did not abolish the LH responses to GnRH. The extracellular Ca2+-dependent component of GnRH action could be mimicked by high K+ concentrations, consistent with the presence of voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs. Ca2+ channel agonist (Bay K 8644) and antagonist (nifedipine) analogs, respectively, enhanced or partially inhibited LH responses to GnRH and also to K+, the latter confirming the participation of two types of VSCC (dihydropyridine-sensitive and -insensitive) in K+-induced secretion. Phorbol esters, including 12-O-tetradecanoylphorbol-13-acetate (TPA), 4 beta-phorbol-12,13-dibenzoate, and 4 beta-phorbol-12,13-diacetate, stimulated LH release with ED50s of 5, 10, and 1000 nM, respectively, and with about 70% of the efficacy of GnRH. Phorbol ester-stimulated LH secretion was decreased but not abolished by progressive reduction of [Ca2+]e in the incubation medium, and the residual LH response was identical with that elicited by GnRH in Ca2+-deficient medium. TPA increased [Ca2+]i to a peak after 20 s in normal medium but not in the absence of extracellular Ca2+, indicating that protein kinase C (Ca2+/phospholipid-dependent enzyme) promotes calcium entry but can also mediate secretory responses without changes in calcium influx and [Ca2+]i. The extracellular Ca2+-dependent action of TPA on LH release was blocked by Co2+. However, nifedipine did not alter TPA action on [Ca2+]i and LH release. These observations indicate that protein kinase C can participate in GnRH-induced LH release that is independent of Ca2+ entry, but also promotes the influx of extracellular Ca2+ through dihydropyridine-insensitive Ca2+-channels.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH) stimulates characteristic biphasic increases in cytosolic calcium concentration ([Ca2+]i) and in luteinizing hormone (LH) release in cultured gonadotrophs, with an early peak followed by a prolonged plateau in both responses. Analysis of [Ca2+]i by dual-wavelength fluorimetric assay and of LH release at 5-sec intervals in perifused pituitary cells revealed increases in both responses within a few seconds of exposure to GnRH. The maximum elevation of [Ca2+]i occurred within 20 sec, and the peak gonadotropin release in 35 sec; the total duration of the spike phase for both [Ca2+]i and LH release was 2.5 min. Under extracellular Ca2(+)-deficient conditions, the GnRH-induced peak in [Ca2+]i was reduced by about 20% and the plateau phase was abolished. Concomitantly, the magnitude of the acute phase of LH release was reduced by 40% and that of the second phase by about 90%. Recovery of the plateau phase of LH release occurred within 25 sec after addition of 1.25 mM Ca2+ to Ca2(+)-deficient medium. In a dose-dependent manner, the non-selective Ca2+ channel blockers Co2+ and Cd2+ reduced the Ca2+ current measured by whole-cell recording in pituitary gonadotrophs and abolished the extracellular Ca2(+)-dependent component of LH release. The selective calcium channel blocker, nifedipine, decreased the magnitude of the Ca2+ current and reduced the plateau phase of LH release by 50%; conversely, the dihydropyridine agonist methyl, 1,4,dihydro-2,6-dimethyl 3-nitro-4-(2-trifluorome) (Bay K 8644) consistently enhanced the amplitudes of both Ca2+ current and GnRH-induced LH release. These data reveal a close temporal correlation between changes in [Ca2+]i and LH release during GnRH action, with Ca2+ mobilization during the spike phase and Ca2+ influx through dihydropyridine-sensitive and insensitive sets of receptor-operated calcium channels during the spike and plateau phases. In addition, analysis of the magnitudes of the [Ca2+]i and LH responses to a wide range of GnRH concentrations in the presence and absence of extracellular Ca2+ is consistent with amplification of the [Ca2+]i signal in agonist-stimulated gonadotrops.  相似文献   

4.
Gonadotropin-releasing hormone (GnRH) stimulates rapid peak increases in [Ca2+]i and LH release, followed by lower but sustained elevations of both [Ca2+]i and hormone secretion. Omission of extracellular Ca2+ only slightly decreased the peak of [Ca2+]i, but reduced the peak LH response by 40% and prevented the prolonged increases in [Ca2+]i and LH release. Dihydropyridine calcium antagonists did not affect the peak [Ca2+]i and LH responses, but reduced the sustained increases by up to 50%. Whereas GnRH-induced mobilization of intracellular calcium initiates the LH peak, and Ca2+ entry through dihydropyridine-insensitive channels contributes to the peak and plateau phases of LH release, dihydropyridine-sensitive L-type Ca2+ channels participate only in the sustained phase of gonadotropin secretion.  相似文献   

5.
Gonadotropin-releasing hormone (GnRH) stimulates calcium mobilization and influx in pituitary gonadotrophs, and agonist-induced calcium entry through voltage-sensitive channels (VSCC) is required for the maintenance of gonadotropin secretion. However, prolonged or frequent exposure to GnRH attenuates the extracellular Ca2+-dependent cytosolic Ca2+ signal and diminishes hormone secretion. Measurements of membrane Ca2+ currents revealed significant impairment of VSCC activity in gonadotrophs during desensitization by GnRH. VSSC were also inactivated in a calcium-dependent manner during exposure to high K+. Prolonged inactivation of such Ca2+ channels by high K+ reduced the calcium and secretory responses to GnRH and vice versa. The calcium-dependent inactivation of VSCC during GnRH action appears to be a primary factor in the onset of desensitization in pituitary gonadotrophs. This mechanism could also account for the development of agonist-induced refractoriness in other calcium-regulated target cells.  相似文献   

6.
Addition of GnRH to pituitary gonadotrophs preloaded with Quin 2 resulted in a rapid (approximately 8 s) mobilization of an ionomycin-sensitive intracellular Ca2+ pool. A second component of Ca2+ entry via voltage dependent channels contributed about 45% of the peak cytosolic free Ca2+ concentration ([Ca2+]i). Thereafter, influx of Ca2+ via voltage-sensitive and -insensitive channels is responsible for maintenance of elevated [Ca2+]i during the second phase of GnRH action. Addition of inositol 1,4,5-trisphosphate (IP3) to permeabilized pituitary cells resulted in a Ca2+ transient, released from a nonmitochondrial pool, which maintained ambient free Ca2+ concentration around 170 nM in an ATP-dependent mechanism. Successive stimulations of the cells with IP3 produced an attenuated response. Elevation of the gonadotroph [Ca2+]i by ionomycin, to levels equivalent to that induced by GnRH, resulted in LH release amounting to only 45% of the response to the neurohormone. Activation of the voltage-dependent Ca2+ channels by the dihydropyridine Ca2+-agonist [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylate (BAYK8644)] stimulated LH release, 36% of the GnRH (100 nM) response being reached by 10(-8) M of the drug, both [Ca2+]i elevation and GnRH-induced LH release were inhibited similarly (40-50%) by the dihydropyridine Ca2+-antagonist nifedipine. The results indicate that peak [Ca2+]i induced by GnRH in pituitary gonadotrophs is derived mainly from ionomycin-sensitive cellular stores most likely via IP3 formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Basal and receptor-regulated changes in cytoplasmic calcium concentration ([Ca2+]i) were monitored by fluorescence analysis in individual rat pituitary gonadotrophs loaded with the calcium-sensitive dye indo-1. Most gonadotrophs exhibited low amplitude spontaneous oscillations in basal [Ca2+]i that were interspersed by quiescent periods and abolished by removal of extracellular Ca2+ or addition of calcium channel blockers. Such random fluctuations in [Ca2+]i, which reflect the operation of a plasma membrane oscillator, were not coupled to basal gonadotropin secretion. The physiological agonist GnRH induced high amplitude [Ca2+]i oscillations; when a threshold [Ca2+]i level was reached, a cytoplasmic oscillator began to generate extremely regular Ca2+ transients. The time required to reach the threshold [Ca2+]i level was inversely correlated with agonist dose; the frequency, but not the amplitude, of agonist-induced Ca2+ spiking increased with agonist concentration. The duration of the latent period decreased and the frequency of Ca2+ spiking increased with the increase in ambient temperature. At high GnRH concentrations, the calcium transients merged into biphasic responses similar to those observed in cell suspensions at all GnRH concentrations. The presence of spontaneous fluctuations in basal [Ca2+]i did not significantly change the patterns of agonist-induced [Ca2+]i responses. Also, removal of extracellular Ca2+ did not interfere with the frequency or amplitude of Ca2+ spikes, but caused the loss of the plateau phase. Blockade of intracellular Ca(2+)-ATPase pumps by thapsigargin was usually accompanied by a subthreshold increase in [Ca2+]i. In such cells the agonist-induced oscillatory pattern was transformed into the biphasic response. In about 10% of the cells, however, high thapsigargin concentrations induced coarse [Ca2+]i oscillations; subsequent stimulation of such cells with GnRH was ineffective. The cytoplasmic oscillatory and biphasic responses may represent a mechanism for differential activation of Ca(2+)-dependent enzymes and their dependent cellular processes, including hormone secretion. The membrane oscillator is probably responsible for refilling of agonist-sensitive pools during and after agonist stimulation.  相似文献   

8.
The gonadotropin secretory response of anterior pituitary cells to phorbol esters includes both extracellular Ca2(+)-dependent and -independent components (Stojilkovi? et al, 1988; J. Biol. Chem. 263, 17301-17306, 1988). In cultured pituitary cells, measurements of [Ca2+]i using Fura-2 and of LH release during cell perifusion studies revealed that the initial effects of phorbols and permeant diacylglycerols on these responses are extracellular Ca2(+)-dependent and are mediated through activation of voltage- and dihydropyridine-sensitive calcium channels. On the other hand, pretreatment with phorbol esters for 30 to 60 min inhibited subsequent [Ca2+]i responses to diacylglycerols and phorbols and significantly reduced agonist-induced biphasic [Ca2+]i responses, with no change in the number of GnRH receptors. These findings demonstrate that protein kinase C exerts both positive and negative control of [Ca2+]i, and indicate that the calcium, phospholipid dependent enzyme participates in the activation of voltage-sensitive calcium channels and hormone secretion in pituitary gonadotrophs.  相似文献   

9.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

10.
An analysis of the relationship between electrical membrane activity and Ca2+ influx in differentiated GnRH-secreting (GT1) neurons revealed that most cells exhibited spontaneous, extracellular Ca(2+)-dependent action potentials (APs). Spiking was initiated by a slow pacemaker depolarization from a baseline potential between -75 and -50 mV, and AP frequency increased with membrane depolarization. More hyperpolarized cells fired sharp APs with limited capacity to promote Ca2+ influx, whereas more depolarized cells fired broad APs with enhanced capacity for Ca2+ influx. Characterization of the inward currents in GT1 cells revealed the presence of tetrodotoxin-sensitive Na+, Ni(2+)-sensitive T-type Ca2+, and dihydropyridine-sensitive L-type Ca2+ components. The availability of Na+ and T-type Ca2+ channels was dependent on the baseline potential, which determined the activation/inactivation status of these channels. Whereas all three channels were involved in the generation of sharp APs, L-type channels were solely responsible for the spike depolarization in cells exhibiting broad APs. Activation of GnRH receptors led to biphasic changes in cytosolic Ca2+ concentration ([Ca2+]i), with an early, extracellular Ca(2+)-independent peak and a sustained, extracellular Ca(2+)-dependent phase. During the peak [Ca2+]i response, electrical activity was abolished due to transient hyperpolarization. This was followed by sustained depolarization of cells and resumption of firing of increased frequency with a shift from sharp to broad APs. The GnRH-induced change in firing pattern accounted for about 50% of the elevated Ca2+ influx, the remainder being independent of spiking. Basal [Ca2+]i was also dependent on Ca2+ influx through AP-driven and voltage-insensitive pathways. Thus, in both resting and agonist-stimulated GT1 cells, membrane depolarization limits the participation of Na+ and T-type channels in firing, but facilitates AP-driven Ca2+ influx.  相似文献   

11.
Gonadotropin-releasing hormone (GnRH)-stimulated changes in the cytosolic free Ca2+ concentration ([Ca2+]i) were studied in gonadotrophs cultured from 3-week ovariectomized rat pituitaries. One animal was used per cell preparation. [Ca2+]i was monitored in individual gonadotrophs by dual emission microspectrofluorimetry, using Indo-1 as the intracellular fluorescent Ca2+ probe. A short stimulation with GnRH evoked a complex concentration-dependent Ca2+ response in individual gonadotrophs. 0.1-1 nM GnRH triggered a series of sinusoidal-like [Ca2+]i oscillations superimposed upon a modest slow [Ca2+]i rise--the oscillating response mode--while 10-100 nM GnRH caused a biphasic increase in [Ca2+]i consisting of a monophasic transient and oscillations--the transient/oscillating response mode. Despite the consistency of Ca2+ responses, an inter-preparation heterogeneity of [Ca2+]i oscillations frequency was noticed. Moreover, we observed that, within a given cell preparation, the frequency of [Ca2+]i oscillations was independent of GnRH concentration whereas both peak [Ca2+]i and area under the [Ca2+]i versus time curve were concentration-dependent. Thus, in gonadotrophs, the presence of the GnRH signal would lead to [Ca2+]i oscillations, while the amplitude of the [Ca2+]i responses would code for the concentration of agonist. Both transient and oscillating components of GnRH responses depended on releasing activity of Ca(2+)-sequestering pools in as much as GnRH responses were unaffected by brief removal of external Ca2+, but suppressed by chelating intracellular free Ca2+ with BAPTA. However, prolonged exposure to a Ca(2+)-free medium suppressed the transient component while leaving the oscillating component unaffected. We therefore propose that gonadotrophs employ Ca(2+)-sequestering pools, whose maintenance depends on a slow Ca(2+)-entry, to give an amplitude-coded Ca2+ rise in response to a short GnRH stimulation.  相似文献   

12.
In cultured pituatary gonadotrophs, gonadotropin-releasing hormone (GnRH) caused dose-dependent and biphasic increases in cytoplasmic calcium concentration ([Ca2+]i) and LH release. Both extra- and intracellular calcium pools participate in GnRH-induced elevation of [Ca2+]i and LH secretion. The spike phase of the [Ca2+]i response represents the primary signal derived predominantly from the rapid mobilization of intracellular Ca2+. In contrast, the prolonged phase of the Ca2+ signal depends exclusively on Ca2+ entry from the extracellular pool. The influx of Ca2+ occurs partially through dihydropyridine-sensitive calcium channels. Both [Ca2+]i and LH responses to increasing concentrations of GnRH occur over very similar time scales, suggesting that increasing degrees of receptor occupancy are transduced into amplitude-modulated Ca2+ responses, which in turn activate exocytosis in a linear manner. However, several lines of evidence indicated the complexity over the relationship between Ca2+ signaling and LH exocytosis. In contrast to [Ca2+]i measurements in cell suspension, single cell Ca2+ measurements revealed the existence of a more complicated pattern of Ca2+ response to GnRH, with a biphasic response to high agonist doses and prominent oscillatory responses to lower GnRH concentrations, with a log-linear correlation between GnRH dose and the frequency of Ca2+ spiking. In addition, analysis of the magnitudes of the magnitudes of the [Ca2+]i and LH responses of gonadotrophs to a wide range of GnRH concentrations in the presence and absence of extracellular Ca2+, and to K+ and phorbol ester stimulation, showed non-linearity between these parameters with amplification of [Ca2+]i-mediated exocytosis. Studies on cell depleted of protein kinase C under conditions that did not change the LH pool suggested the participation of protein kinase C in this amplication, especially during the plateau phase of the secretory response to GnRH.  相似文献   

13.
We have previously characterized the calcium response of cultured human fibroblasts (HSWP cells) to stimulation by the mitogen Lys-bradykinin (BK). We have reported a biphasic response which includes a rapid rise to a peak that appears to result from mobilization of internal calcium, and a plateau phase, which is due to influx of external calcium (Byron, K., Babnigg, G., Villereal, M. L. (1992) J. Biol. Chem. 267, 108-118). In this paper we examine participation of L-type voltage operated calcium channels in the calcium entry phase of BK-stimulated HSWP cells. We show that there is an increase in 45Ca2+ uptake and an increase in intracellular free calcium concentration ([Ca2+]i) as measured by fura-2, when HSWP cells are stimulated with the L-channel agonist Bay K 8644 under depolarizing conditions. Furthermore, both of these effects are inhibited by low doses of the dihydropyridine antagonist nitrendipine. We also report that BK stimulation of 45Ca2+ uptake can be significantly inhibited by low doses of nitrendipine, while nitrendipine treatment has no effect on the BK-induced rise in [Ca2+]i, as measured by fura-2. These results suggest that under normal conditions the portion of the BK-stimulated Ca2+ influx which is mediated by a nitrendipine-sensitive entry pathway is invisible to the fura-2 technique used to measure [Ca2+]i. This suggest that the nitrendipine-sensitive influx pathway admits calcium preferentially into an intracellular store that is isolated from fura-2. This idea is supported by the observation that in media where calcium has been replaced by 2 mM Ba2+ nitrendipine inhibits most of the BK-stimulated Ba2+ influx.  相似文献   

14.
[Ca2+]i increase is necessary in physiological platelet activity, particularly aggregation and release. The increase of [Ca2+]i observed during platelet activation depends in part on Ca2+ influx from the extracellular medium. The participation of voltage-operated Ca2+ channels as a pathway for Ca2+ entry is controversial. In the present study we have attempted to reinvestigate this problem by measuring aggregation and [Ca2+]i changes in platelets activated by ADP or thrombin and incubated with organic or inorganic blockers of calcium channels. The main findings of the present paper can be summarized as follows: (i) Ni2+, Co2+ and Mn2+, well known inorganic blockers of Ca2+ channels, inhibited platelet aggregation induced by ADP or thrombin in a dose-dependent manner, Ni2+ being the most effective agent. (ii) Thrombin induced a rise in free [Ca2+]i in platelets incubated both in 1 mmol/l Ca(2+)-containing medium and in nominally Ca(2+)-free medium; the rise of free [Ca2+]i was in the first case up to 370 +/- 31 nmol/l and in the second case up to 242 +/- 26 nmol/l, indicating that this observed difference was due to Ca2+ entry from the extracellular medium. Co2+ and Ni2+ abolished that difference by inhibiting Ca2+ influx. (iii) Nisoldipine, nitrendipine and nimodipine (10-50 nmol/l) inhibited in a dose-dependent manner platelet aggregation induced by either ADP or thrombin in platelets incubated in normal-Ca2+ normal-K+ medium, also, aggregation was inhibited to a similar extent in platelets incubated in normal-Ca2+ high-K+ medium. (iv) Nisoldipine--the most effective dihydropyridine to inhibit platelet aggregation--also inhibited Ca2+ influx in platelets incubated in normal-Ca2+ medium, either in normal-K+ or high-K+ media. Our data support the existence of voltage-operated, dihydropyridine-sensitive calcium channels (L-type) and a physiological role for them in platelet function.  相似文献   

15.
Stimulation of human neutrophils with f-met-leu-phe, platelet-activating factor, or leukotriene B4 resulted in an increase in [Ca2+]i. The [Ca2+]i rise was greater in the presence than absence of external Ca2+; the component that was dependent on external Ca2+ was blocked by Ni2+, or could be reconstituted by addition of external Ca2+ following discharge of the internal Ca2+ store. These measurements of [Ca2+]i responses provide only indirect evidence for agonist-stimulated Ca2+ entry, and here we have used an alternative approach to demonstrate directly agonist-stimulated divalent cation entry. In the presence of extracellular Mn2+, f-met-leu-phe, leukotriene B4, and platelet-activating factor stimulate a quench in fluorescence of fura-2-loaded human neutrophils. This quench was due to stimulated Mn2+ influx and was blocked by Ni2+. When Mn2+ was added in the continued presence of agonist, after discharge of the internal store of Ca2+, a stimulated quench was seen; this result shows that an elevated [Ca2+]i is not needed for the stimulation of Mn2+ entry. Depolarization by high [K+] or addition of the L-type Ca2+ channel agonist, BAY-R-5417, had little or no effect on either [Ca2+]i or Mn2+ entry. These results show that agonists stimulate divalent cation entry (Ca2+ or Mn2+) by a mechanism independent of changes in [Ca2+]i and unrelated to voltage-dependent Ca2+ channels.  相似文献   

16.
《The Journal of cell biology》1990,111(6):2543-2552
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose- dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.  相似文献   

17.
The stimulation of luteinizing hormone (LH) release and cyclic GMP (cGMP) production in rat anterior pituitary cells by gonadotropin-releasing hormone (GnRH) are receptor mediated and calcium dependent, and have been shown to be accompanied by increased phospholipid turnover and arachidonic acid release. The incorporation of 32Pi into the total phospholipid fraction of pituitary gonadotrophs was significantly elevated by 10(-8) M GnRH, with specific increases in the labeling of phosphatidylinositol and phosphatidic acid (PA). Since PA acts as a calcium ionophore in several cell types, its effects upon calcium-mediated gonadotroph responses were compared with those elicited by GnRH. In rat pituitary gonadotrophs prepared by centrifugal elutriation, PA stimulated LH release and cGMP production by 9-fold and 5-fold, respectively. The stimulation of LH release by 30 microM PA was biphasic in its dependence on extracellular calcium concentration, rising from zero in the absence of calcium to a maximum of 10-fold at 0.5 mM Ca2+ and declining at higher calcium concentrations. In dose-response experiments, PA was 3-fold more potent at 0.5 mM Ca2+ than at 1.2 mM Ca2+. The cGMP response to PA in cultured gonadotrophs was also calcium dependent, and was progressively enhanced by increasing Ca2+ concentrations up to 1.5 mM. The ability of PA to stimulate both LH release and cGMP formation in a calcium-dependent manner suggests that endogenous PA formed in response to GnRH receptor activation could function as a Ca2+ ionophore in pituitary gonadotrophs, and may participate in the stimulation of gonadotroph responses by GnRH and its agonist analogs.  相似文献   

18.
Kinetic studies on gonadotropin-releasing-hormone (gonadoliberin, GnRH)-stimulated luteinizing-hormone (lutropin, LH) release in the cultured rat gonadotrope demonstrated a biphasic pattern of LH release. The first rapid phase of release was unaffected by the voltage-gated Ca2+-channel blockers methoxyverapamil (D600) and nifedipine [a dihydropyridine (DHP)], whereas the later second phase was partially inhibited by both drugs. These results suggested that the initial phase of LH release is independent of Ca2+ entry through dihydropyridine (DHP)-sensitive Ca2+ channels and might depend on entry of extracellular Ca2+ by another mechanism. These mechanisms were further studied by utilizing Ba2+ as a Ca2+ substitute. Ba2+, which freely permeates DHP-sensitive Ca2+ channels in the absence of GnRH, induced LH release which was sensitive to blockade by D600 and nifedipine. However, in the presence of the channel blockers, Ba2+-induced LH release could be elicited when GnRH was added to the system. This indicates that GnRH stimulates LH release by initially activating a DHP-insensitive Ca2+-entry mechanism and then a DHP-sensitive mechanism. The DHP-sensitive mechanism freely allows Ba2+ entry in the absence of GnRH-receptor occupancy, whereas the DHP-insensitive mechanism requires GnRH-receptor activation for Ba2+ entry.  相似文献   

19.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

20.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号