首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In HL60 cells a nuclear protein of Mr 55,000 is retinoylated, with the formation of a thioester bond. To gain further knowledge on the role of retinoylation we studied it in cell lines with varied responses to retinoic acid (RA). Compared to HL60 the extent of retinoylation (mol/cell) was about fivefold higher in HL60/MRI, a mutant which is more sensitive to RA than HL60. Retinoylation occurred to the same extent and at similar rates in HL60 and in HL60/RA-res, a mutant resistant to differentiation by RA. One-dimensional polyacrylamide gel electrophoresis patterns for the three HL60 cell lines were similar. However, two-dimensional polyacrylamide gel electrophoresis patterns of the three HL60 cell lines were distinct. While we saw the same major retinoylated protein of Mr 55,000 in the three cell lines, the HL60/RA-res cells also contained a high level of a protein with the same Mr and a lower pI. The extent of retinoylation was greater in the RA-sensitive embryonal carcinoma cell line, PCC4.aza1R, than in a RA-resistant cell line, PCC4.(RA)-2. One-dimensional polyacrylamide gel electrophoresis patterns of retinoylated proteins of the embryonal carcinoma cell lines were different from HL60 and from each other. The retinoylation pattern of the normal canine kidney cell line (MDCK) was different from either HL60 or the embryonal carcinoma cells. These results showed the retinoylation was widespread and that the response to RA of different cell types may depend on the retinoylation of specific proteins.  相似文献   

2.
Retinoylation (acylation of proteins by retinoic acid) is considered as one mechanism of retinoic acid (RA) action occurring in cells in vitro and in vivo. Previously, our studies showed that in rat tissues the formation of retinoyl-CoA from RA, the first step of retinoylation, required ATP, CoA and MgCl(2). In the current study, we examined whether the transfer of retinoyl-CoA into proteins, the second step of retinoylation, occurs in rat tissues. [(3)H]-Labeled-retinoyl-CoA bound covalently to proteins in rat liver, kidney, testis, and brain. The levels of incorporation of retinoyl-CoA into proteins were higher in vitamin A-deficient rats than in normal ones. The formation of retinoylated proteins depended on the incubation time, and the concentrations of retinoyl-CoA and homogenate. The reaction was suppressed by fatty acyl-CoAs and palmitic acid, but not by arachidonic acid. The Vmax and Km values for retinoyl-CoA in the formation of retinoylated proteins using a crude liver extract were estimated to be 2,597.3 pmol/min/mg protein and 9.5 x 10(-5) M, respectively. Retinoylated proteins formed from retinoyl-CoA, including a 17 kDa protein exhibiting high radioactivity, disappeared in the presence of 2-mercaptoethanol, indicating that RA was linked to the proteins through a thioester bond. These results demonstrate that retinoylation in rat tissues occurs via retinoyl-CoA formed from RA. This process may play a significant physiological role in cells.  相似文献   

3.
all-trans-Retinoic acid is a potent inducer in vitro of the differentiation of the human acute myeloid leukemia cell line HL60 and of fresh cells from patients with acute promyelocytic leukemia. The recent discovery of nuclear retinoic acid receptors provides a basis for understanding how retinoic acid acts at the genetic level. We have now found that retinoic acid is incorporated into HL60 cells in a form that is not removed by extraction with CHCl3:CH3OH. About 90% of this labeled retinoic acid is trichloroacetic acid-soluble after digestion with proteinase K or after hydrolysis with either NH2OH or CH3OH:KOH under mild conditions. Methyl retinoate is the major product of hydrolysis with CH3OH:KOH. These results are consistent with retinoylation of protein with the formation of an ester, probably thioester, bond. The extent of the retinoylation of HL60 protein is dependent on both time and retinoic acid concentration. A major fraction of the retinoylation is of protein that has a molecular mass of 55 kDa after reduction with dithiothreitol. On two-dimensional gels, the retinoylated protein has a pI of about 4.9 and a molecular mass of 55-60 kDa. These characteristics and its localization in the cell nucleus are consistent with retinoylation of the HL60 nuclear retinoic acid receptor or a closely related protein.  相似文献   

4.
The vitamin A derivative, retinoic acid (RA) has various biological effects in mammalian cells and tissues. It is well known that RA induces differentiation of leukemia cells and inhibits cell growth. There are two pathways for RA action; one via RA nuclear receptors (RARs), and one via acylation of proteins by RA (retinoylation). However, an understanding of which actions of RA occur via RARs and which occur via retinoylation is lacking. Thus, we undertook the examination of HL60 proteins using anti-RA monoclonal antibodies (ARMAs). These ARMAs showed specific binding to proteins in a saturable manner depending on protein and antibody concentration. Proteins eluted by Mono Q anion exchange chromatography and separated using two-dimensional polyacrylamide gel electrophoresis were detected by ARMAs. One of these ARMA-bound proteins in HL60 cells was identified as alpha-actinin. These results indicate that retinoylated proteins in HL60 cells can be recognized by ARMAs and that alpha-actinin modified by RA may play a significant role in RA-induced differentiation, including the promotion of cytomorphology changes.  相似文献   

5.
BackgroundActivation of protein kinase A (PKA) occurs during retinoic acid (RA)-induced granulocytic differentiation of human promyelocytic leukemia HL60 cells. It is known that the RIIα regulatory subunit of PKA, is modified by RA (retinoylated) in the early stages of differentiation. We have investigated the effects of RA on PKA during cell differentiation in order to understand the potential significance of this process in the retinoylation of RIIα subunits.MethodsImmunoblotting, immunoprecipitation, confocal microscopy, PCR, and PKA activity assays were employed for characterizing the effects of RA on PKA.ResultsWe found that RA induces intracellular mobility of RIIα and the activation of PKA in HL60 cells. Increases in RIIα levels were observed in RA-treated HL60 cells. RA treatment altered intracellular localization of the PKA subunits, RIIα and Cα, and increased their protein levels in the nuclei as detected by both immunoblotting and immunostaining analyses. Coincident with the increase in nuclear Cα, RA-treated HL60 cells showed increases in both the protein phosphorylation activity of PKA and the levels of phosphorylated proteins in nuclear fractions as compared to control cells. In addition, RIIα protein was stabilized in RA-treated HL60 cells as compared to control cells.ConclusionsThese results suggest that RA stabilizes RIIα protein and activates PKA in the nucleus, with a resultant increase in the phosphorylation of nuclear proteins.General significanceOur evidence suggests that retinoylation of PKA might contribute to its stabilization and activation and that this could potentially participate in RA's ability to induce granulocytic differentiation of HL60 cells.  相似文献   

6.
Retinoylation (retinoic acid acylation) is a post-translational modification of proteins occurring in a variety of eukaryotic cell lines. There are at least 20 retinoylated proteins in the human myeloid leukemia cell line HL60 (N. Takahashi and T.R. Breitman (1990) J. Biol. Chem. 265, 19, 158-19, 162). Here we found that some retinoylated proteins may be cAMP-binding proteins. Five proteins, covalently labeled by 8-azido-[32P]cAMP which specifically reacts with the regulatory subunits of cAMP-dependent protein kinase, comigrated on two-dimensional polyacrylamide gel electrophoresis with retinoylated proteins of Mr 37,000 (p37RA), 47,000 (p47RA), and 51,000 (p51RA) labeled by [3H]retinoic acid treatment of intact cells. Furthermore, p47RA coeluted on Mono Q anion exchange chromatography with the type I cAMP-dependent protein kinase holoenzyme and p51RA coeluted on Mono Q anion exchange chromatography with the type II cAMP-dependent protein kinase holoenzyme. An antiserum specific to RI, the cAMP-binding regulatory subunit of type I cAMP-dependent protein kinase, immunoprecipitated p47RA. An antiserum specific to RII, the cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase, immunoprecipitated p51RA. These results indicate that both the RI and the RII regulatory subunits of cAMP-dependent protein kinase are retinoylated. Thus, an early event in RA-induced differentiation of HL60 cells may be the retinoylation of subpopulations of both RI and RII.  相似文献   

7.
Retinoic acid (RA) induces the differentiation of human promyelocytic leukemia HL60 cells into granulocytic cells and inhibits proliferation. Certain of actions of RA are mediated by RA nuclear receptors that regulate gene expression. However, it is also known that direct protein modification by RA (retinoylation) can occur. One such retinoylated protein in HL60 cells is a regulatory subunit of protein kinase A (PKA), which is increased in the nucleus following RA treatment and which then increases phosphorylation of other nuclear proteins. However, a complete understanding of which nuclear proteins are phosphorylated is lacking. In the current study, we employed mass spectrometry to identify one of the PKA-phosphorylated proteins as a serine/arginine-rich splicing factor 1 (SF2, SRSF1). We found that RA treatment increased the level of PKA-phosphorylated SF2 but decreased the level of SF2. While SF2 regulates myelogenous cell leukemia-1 (Mcl-1, anti-apoptotic factor), RA treatment reduced the level of Mcl-1L (full-length Mcl-1 long) and increased the level of Mcl-1S (Mcl-1 short; a short splicing variant of the Mcl-1). Furthermore, treatment with a PKA inhibitor reversed these effects on Mcl-1 and inhibited RA-induced cell differentiation. In contrast, treatment with a Mcl-1L inhibitor enhanced RA-induced cell differentiation. These results indicate that RA activates PKA in the nucleus, increases phosphorylation of SF2, raises levels of Mcl-1S and lowers levels of Mcl-1L, resulting in the induction of differentiation. RA-modified PKA may play an important role in inducing cell differentiation and suppressing cell proliferation.  相似文献   

8.
Retinoic acid (RA) exerts diverse biological effects in the control of cell growth in embryogenesis and oncogenesis. The effects of RA are thought to be mediated by the nuclear retinoid receptors; however, not all the effects of RA can be explained by the nuclear receptor pathways. Indeed, retinoylation is another mechanism of action elicited by RA. In growing TM-3 Leydig cell cultures, the extent of retinoylation depends in a saturable manner on the initial concentration of 3H-RA, time and cell number. In addition, dose-response curves for RA-induced testosterone production and retinoylation are concomitant and exhibit a positive correlation. In the present study we demonstrate that RA is able to influence a retinoylation reaction on protein(s) probably involved on steroidogenesis. Paola Tucci and Erika Cione are equally contributed.  相似文献   

9.
Retinoylation (retinoic acid acylation), a posttranslational modification of proteins occurring in a variety of eukariotic cell lines both in vivo and in vitro, was studied in rat testes mitochondria. all-trans-Retinoic acid, a highly active form of vitamin A in inducing cellular differentiation, is incorporated covalently into proteins of rat testes mitochondria. The maximum retinoylation activity of rat testes mitochondrial proteins was 21.6 pmoles mg protein(-1) 90 min(-1) at 37 degrees C. The activation energy was 44 kJ mol(-1) from 5 to 37 degrees C. The retinoylation activity had a pH optimum of 7.5. The retinoylation process was specific for the presence of ATP, ADP, and GTP (even if only 30% of the control). The half saturation constant (Km) was 0.69 microM for all-trans-retinoic acid, while the inhibition constant (Ki) was 1.5 microM for 13-cis-retinoic acid. Retinoylation was not inhibited by high concentrations of myristic acid (MA) and palmitic acid (PA), indicating that retinoylation and acylation reactions involved different rat testes mitochondrial proteins. The ATP or CoASH saturation curves of retinoylation reaction showed sigmoidal behavior with apparent half saturation constants (K0.5) of 6.5 mM ATP and 40.6 microM CoASH. On SDS-gel electrophoresis, the hydroxylapaptite/celite eluate showed various protein bands between 25 and 80 kDa. This retinoylated protein was purified 17-fold with respect to the mitochondrial extract.  相似文献   

10.
The covalent incorporation of [3H]all-trans-retinoic acid into proteins has been studied in tumoural Leydig (MLTC-1) cells. The maximum retinoylation activity of MLTC-1 cell proteins was 710 ± 29 mean ± SD) fmoles/8 × 104 cells at 37 °C. About 90% of [3H]retinoic acid was trichloroacetic acid-soluble after proteinase-K digestion and about 65–75% after hydrolysis with hydroxylamine. Thus, retinoic acid is most probably linked to proteins as a thiol ester. The retinoylation reaction was inhibited by 13-cis-retinoic acid and 9-cis-retinoic acid with IC50 values of 0.9 μM and 0.65 μM, respectively. Retinoylation was not inhibited by high concentrations of palmitic or myristic acids (250 μM); but there was an increase of the binding activity of about 25% and 130%, respectively. On the other hand, the retinoylation reaction was inhibited (about 40%) by 250 μM lauric acid. After pre-incubation of the cells with different concentrations of unlabeled RA, the retinoylation reaction with 100 nM [3H]RA involved first an increase at 100 nM RA and then a decrease of retinoylation activity between 200 and 600 nM RA. After cycloheximide treatment of the tumoural Leydig cells the binding activity of [3H]RA was about the same as that in the control, suggesting that the bond occurred on proteins in pre-existing cells. (Mol Cell Biochem 276: 55–60, 2005)This paper is dedicated to the memory of Prof. E. Quagliariello.  相似文献   

11.
Summary Both retinoic acid and 17β-estradiol formed covalent bonds with proteins of the human breast cancer cell line MCF-7. Two-dimensional gel patterns of the labeled proteins were unique for each ligand. There were four major retinoylated proteins in MCF-7 consisting of two doublets with molecular masses of 37 kDa and 20 kDa. These proteins were designated 37a, 37b, 37c, and 20d. The extent of retinoylation was very low in a 55 kDa protein that we previously identified in the human myeloid leukemia cell line HL60 [Takahashi, N. and Breitman, T. R. (1989) J. Biol. Chem. 264, 5159–5163]. These results indicated that the protein substrates for retinoylation may vary among cell-types. About 10 proteins were labeled from 17β-estradiol. Two of these proteins had mobilities that were identitied to the retinoylated proteins 37a and 20c. These results indicate that in MCF-7 cells there are two proteins that can be retinoylated and labeled from estradiol. The demonstration that some ligands of the steroid/thyroid receptor family are covalently linked to cellular proteins suggests new mechanisms for the many effects of these agents on cells. This study is the first report showing that estradiol or one of its metabolic products covalently binds to proteins in the human breast cancer cell line MCF-7. Two of the proteins labeled from radioactive estradiol comigrate with proteins labeled from radioactive retinoic acid. These results suggest new mechanisms of action for the steroid and thyroid hormones. EDITOR’S STATEMENT This study is the first report showing that estradiol or one of its metabolic products covalently binds to proteins in the human breast cancer cellline MCF-7. Two of the proteins labeled from radioactive estradiol comigrate with proteins labeled from radioactive retinoic acid. These results suggest new mechanisms of action for the steroid and thyroid hormones.  相似文献   

12.
Retinoylation (retinoic acid acylation) is a covalent modification of proteins occurring in a variety of eukaryotic cell lines. In this study, we found that proteins in undifferentiated and squamous-differentiated normal human epidermal keratinocytes were retinoylated after treatment with [3H]retinoic acid. The major retinoylated proteins were identified as cytokeratins based on their profile in two-dimensional gel electrophoresis and their immunoreactivity with anti-keratin monoclonal antibodies. The covalently bound [3H]retinoic acid was not removed by mild hydrolysis with methanolic-KOH indicating that it is not linked to the cytokeratins by a thioester bond. The results raise the possibility that retinoylation of cytokeratins is involved in some of the effects of retinoic acid on keratinocytes.  相似文献   

13.
14.
Incubation of nondifferentiated HL-60 cells with high specific activity myristic acid results in myristoylation of a 25 KD membrane protein. Myristoylation was inhibited by retinoic acid but not by DMSO, thus indicating that the nonmyristoylated state induced by retinoic acid is causal to rather than the result of the overall differentiation sequel induced. Similarly, incubation of HL-60 cells with high specific activity retinoic acid results in specific retinoylation of a membrane protein of similar molecular mass. The two acylated proteins could however be separated by 2-D gel electrophoresis, thus indicating that inhibition of myristoylation by retinoic acid could not be accounted for by competition between retinoic and myristic acids for the same acylated site.  相似文献   

15.
All-trans-retinoic acid (atRA), an activated metabolite of vitamin A, is incorporated covalently into proteins both invivo and invitro. AtRA reduced the transport activity of the oxoglutarate carrier (OGC) isolated from testes mitochondria to 58% of control via retinoylation reaction. Labeling of testes mitochondrial proteins with (3)HatRA demonstrated the binding of atRA to a 31.5 KDa protein. This protein was identified as OGC due to the competition for the labeling reaction with 2-oxoglutarate, the specific OGC substrate. The role of retinoylated proteins is currently being explored and here we have the first evidence that retinoic acids bind directly to OGC and inhibit its activity in rat testes mitochondria via retinoylation reaction. This study indicates the evidence of a specific interaction between atRA and OGC and establishes a novel mechanism for atRA action, which could influence the physiological biosynthesis of testosterone in situations such as retinoic acid treatment.  相似文献   

16.
Palmitoylcarnitine was previously shown to promote differentiation of neuroblastoma NB-2a cells. It was also observed to increase palmitoylation of several proteins and to diminish incorporation of palmitic acid to phospholipids, as well as to affect growth associated protein GAP-43 by decreasing its phosphorylation and interaction with protein kinase C. The present study was focused on influence of palmitoylcarnitine on palmitoylation of GAP-43 and lipid metabolism. Althought palmitoylcarnitine did not significantly affect the total phospholipids and fatty acid content, it increased incorporation of palmitate moiety to triacylglicerides and cholesterol esters, with a decrease of free cholesterol content. The presence of palmitoylcarnitine significantly increased the amount of covalently bound palmitate to GAP-43, which can regulate the signal transduction pathways.  相似文献   

17.
The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD(+) and hydrolysis of either NAD(+) or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD(+) glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a approximately 43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the approximately 43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.  相似文献   

18.
Previously, we have reported a defect in the cAMP-dependent protein kinases (cAMP-PK) in psoriatic cells (i.e., a decrease in 8-azido-[32P]cAMP binding to the regulatory subunits and a decrease in phosphotransferase activity) which is rapidly reversed with retinoic acid (RA) treatment of these cells. This led us to examine a possible direct interaction between retinoids and the RI and RII regulatory subunits through retinoylation. Retinoylation of RI and RII present in normal and psoriatic human fibroblasts was analysed by [3H]RA treatment of these cells, followed either by chromatographic separation of the regulatory subunits or by their specific immunoprecipitation. These studies indicated that RI and RII can be retinoylated. [3H]RA labeling of the RII subunit was significantly (P < 0.005) greater in psoriatic fibroblasts (nine subjects; mean 7.47 relative units ± 1.37 SEM) compared to normal fibroblasts (eight subjects; mean 2.46 relative units ± 0.49 SEM). [3H]RA labeling of and the increase in 8-azido-[32P]-binding to the RI and RII subunit in psoriatic fibroblasts showed a similar time course. This suggests that the rapid effect of retinoic acid treatment to enhance 8-azido-[32P]-cAMP binding to the RI and RII in psoriatic fibroblasts may be due, in part, to covalent modification of the regulatory subunits by retinoylation. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
Membrane origin for a signal eliciting a program of cell differentiation   总被引:1,自引:0,他引:1  
Evidence is presented to indicate that the retiNOic acid (RA)-induced program of myeloid differentiation and growth arrest by HL-60 human promyelocytic leukemia cells was initiated by a signal originating at the cell membrane. Free RA and RA covalently immobilized on a solid substrate elicited similar kinetics of differentiation and G1/0-specific growth arrest. No evidence of cell-induced RA detachment from the solid substrate was found. The data explain why HL-60 cells which are deficient in cellular RA-binding protein (CRABP) nevertheless respond to RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号