首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhao X  Li X  Trusa S  Olson SC 《Regulatory peptides》2005,132(1-3):113-122
We previously demonstrated that angiotensin II (Ang II) stimulates an increase in nitric oxide synthase (NOS) mRNA levels, eNOS protein expression and NO production via the type 2 (AT2) receptor, whereas signaling via the type 1 (AT1) receptor negatively regulates NO production in bovine pulmonary artery endothelial cells (BPAECs). In the present study, we investigated the components of the AT1 receptor-linked signaling pathway(s) that are involved in the downregulation of eNOS protein expression in BPAECs. Treatment of BPAECs with either AT1 receptor antagonists or an anti-AT1 receptor antibody induced eNOS protein expression. Furthermore, intracellular delivery of GP-Antagonist-2A, an inhibitor of Galphaq proteins, and treatment of BPAECs with U73122, a phosphatidylinositol-phospholipase C (PLC)-specific inhibitor, enhanced eNOS protein expression. Treatment of BPAECs with the cell-permeable calcium chelator, BAPTA/AM, increased eNOS protein expression at 8 h, while increasing intracellular calcium with either thapsigargin or A23187 prevented Ang II-induced eNOS protein expression. Phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, completely prevented Ang II-stimulated eNOS protein expression at 8 h, whereas depletion of PKC by long-term treatment with PMA, induced eNOS protein expression. Treatment of BPAECs with a PKCalpha-specific inhibitor or transfection of BPAECs with an anti-PKCalpha neutralizing antibody stimulated eNOS protein expression. Conversely, rottlerin, a PKCdelta specific isoform inhibitor had no effect on basal or Ang II-stimulated eNOS protein expression. Moreover, treatment of BPAECs with U73122, BAPTA/AM and PKCalpha-specific inhibitors increased NO production at 8 h. In conclusion, Ang II downregulates eNOS protein expression via an AT1 receptor-linked pathway involving Galphaq/PLC/calcium/PKCalpha signaling pathway in BPAECs.  相似文献   

2.
The effects of thrombin on adenylyl cyclase activity were examined in rat adrenal medullary microvascular endothelial cells (RAMEC). Confluent RAMEC monolayers were stimulated for 5 min with cAMP-generating agents in the absence and presence of thrombin, and intracellular cAMP was measured with a radioligand binding assay. Thrombin (0.001–0.25 U/ml) dose-dependently inhibited IBMX-, isoproterenol- and forskolin-stimulated cAMP accumulation. A peptide agonist of the thrombin receptor, γ-thrombin, and the serine proteases trypsin and plasmin, also inhibited agonist-stimulated cAMP levels, while proteolytically inactive PPACK- or DIP-α-thrombins were without effect. Moreover, the thrombin inhibitor hirudin abolished the inhibitory effect of thrombin but not of the peptide agonist. These results suggest that the inhibitory action of thrombin on cAMP accumulation is mediated by a proteolytically-activated thrombin receptor. The inhibitor of Gi-proteins pertussis toxin abolished the inhibitory effect of thrombin on isoproterenol- or IBMX-stimulated cAMP production, while the phorbol ester PMA partly impaired it. The protein kinase C inhibitors staurosporine or H7 and the intracellular Ca2+ chelator BAPTA-AM were without effect. Collectively, our data suggest that the thrombin receptor in RAMEC is negatively coupled to adenylyl cyclase through a pertussis toxin-sensitive Gi-protein.  相似文献   

3.
Bovine pulmonary artery endothelial cells (BPAEC) are extremely sensitive to oxygen, mediated by superoxide production. Ionizing radiation is known to generate superoxide in oxygenated aqueous media; however, at systemic oxygen levels (3%), no oxygen enhancement is observed after irradiation. A number of markers (cell growth, alamarBlue, mitochondrial membrane polarization) for metabolic activity indicate that BPAEC maintained under 20% oxygen grow and metabolize more slowly than cells maintained under 3% oxygen. BPAEC cultured in 20% oxygen grow better when they are transiently transfected with either manganese superoxide dismutase (MnSOD) or copper zinc superoxide dismutase (CuZnSOD) and exhibit improved survival after irradiation (0.5-10 Gy). Furthermore, X irradiation of BPAEC grown in 20% oxygen results in very diffuse colony formation, which is completely ameliorated by either growth in 3% oxygen or overexpression of MnSOD. However, MnSOD overexpression in BPAEC grown in 3% oxygen provides no further radioprotection, as judged by clonogenic survival curves. Radiation does not increase apoptosis in BPAEC but inhibits cell growth and up-regulates p53 and p21 at either 3% or 20% oxygen.  相似文献   

4.
The goal was to assess whether salmeterol, a potent and long-acting beta-2-adrenergic agonist used in the treatment of asthma, also has non-beta-2-adrenergic effects on the stimulation or inhibition of adenylyl cyclase activity. Salmeterol (100 nM) maximally stimulated cAMP accumulation in enzyme dispersed bovine trachealis cells and this was entirely inhibited by propranolol, as expected for beta-adrenergic stimulation. However, the same concentration of salmeterol also antagonized carbachol inhibition of cAMP accumulation and altered binding of carbachol to muscarinic receptors. These effects of salmeterol were sensitive to washing of the cells and this was not consistent with a beta-2-adrenergic mechanism. The findings suggested that the maximal, beta-2-adrenergic stimulation of cAMP accumulation by salmeterol was accompanied by a non-beta-2-adrenergic interaction of salmeterol with muscarinic receptors that attenuated muscarinic inhibition of adenylyl cyclase.  相似文献   

5.
Long-term infusion of prostacyclin, or its analogs, is an effective treatment for severe pulmonary arterial hypertension. However, dose escalation is often required to maintain efficacy. The aim of this study was to investigate the mechanisms of prostacyclin receptor desensitization using the prostacyclin analog cicaprost in rat pulmonary artery smooth muscle cells (PASMCs). Desensitization of the cAMP response occurred in 63 nM cicaprost after a 6-h preincubation with agonist. This desensitization was reversed 12 h after agonist removal, and resensitization was inhibited by 10 microg/ml of cycloheximide. Desensitization was heterologous since desensitization to other G(s)alpha-adenylyl cyclase (AC)-coupled agonists, isoproterenol (1 microM), adrenomedullin (100 nM), or bradykinin (1 microM), was also reduced by preincubation with cicaprost. The reduced cAMP response to prolonged cicaprost exposure appeared to be due to inhibition of AC activity since the responses to the directly acting AC agonist forskolin (3 microM) and the selective AC5 activator NKH-477 were similarly reduced. Expression of AC2 and AC5/6 protein levels transiently decreased after 1 h of cicaprost exposure. The PKA inhibitor H-89 (1 microM) added 1 h before cicaprost preincubation (6 h, 63 nM) completely reversed cicaprost-induced desensitization, whereas the PKC inhibitor bisindolylmaleimide (100 nM) was only partly effective. Desensitization was not prevented by the G(i) inhibitor pertussis toxin. In conclusion, chronic treatment of PASMCs with cicaprost induced heterologous, reversible desensitization by inhibition of AC activity. Our data suggest that heterologous G(s)alpha desensitization by cicaprost is mediated predominantly by a PKA-inhibitable isoform of AC, most likely AC5/6.  相似文献   

6.
Bovine pulmonary artery endothelial cells (BPAEC) were cultured in vitro under a variety of conditions to investigate how metallothionein (MT) might participate in zinc homeostasis. Experimental conditions included 10% serum to ensure that the in vitro environment would be a better reflection of the in vivo situation than with protein-free medium. MT was increased by acutely high zinc concentrations (100-200 micromol/L) in the extracellular environment. MT was relatively insensitive to moderate changes in zinc concentration (2-50 micromol/L), even after prolonged exposure for 7 to 12 days. BPAEC had reduced MT content when grown in medium containing serum that had been dialyzed to remove components with a molecular mass of less than 1,000, including zinc. Because the principal source of the major minerals in the experimental medium was not the serum, their concentrations in the final medium were not significantly influenced by serum dialysis. Restoring the zinc concentration in the medium containing the dialyzed serum did not restore MT content in BPAEC, suggesting that some small molecular weight molecule other than zinc established their basal MT content. This study did not identify these putative factors in serum, but hormones are likely candidates. Forty-eight-hour incubations of BPAEC with interleukin (IL-6) or dexamethasone increased cellular MT; however, 17beta-estradiol decreased MT, and IL-1 and adenosine 3',5'-cyclic phosphate (cAMP) had no discernible effect. We conclude that extracellular zinc concentrations have relatively little impact on the cellular concentrations of MT and zinc of BPAEC in vitro. Zinc homeostasis by BPAEC is not maintained by changing the MT concentration in response to changes in the extracellular zinc environment. (J. Nutr. Biochem. 10:00-00, 1999).  相似文献   

7.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

8.
Conventional methods of endothelial cell culture on monolayers and beads require enzymatic digestion, traumatic scraping, or centrifugation to transfer cells to other experimental systems. Gelfoam, a porous gelatin block, not only supports the growth of bovine pulmonary artery endothelial cells but also allows the rapid transfer of cell-laden blocks from one experimental system to another with minimal intervention. This property has been shown to be especially useful for the rapid fixation of endothelial cells for microscopy using standard histologic methods. Histology confirmed that the trabecular nature of the substrate allows endothelial cells to line the interstices of the sponge matrix and grow in a configuration that simulates the appearance of the endothelium in small vessels and capillaries. The inoculation of 1 x 10(5) endothelial cells on 7.5 mg Gelfoam (24 x 8 x 2 mm blocks) was enhanced by fibroblast growth factor and resulted in cell attachment by day 2 with a cell doubling time of 1.7 days. In addition, endothelial cells completely infiltrated 1, 5 and 7.5 mg Gelfoam blocks, as verified by histology. Assays to quantify cell number and protein were easily performed. To facilitate cell counting, the Gelfoam matrix was rapidly removed by the addition of 0.05 mg/ml collagenase, a concentration that interfered minimally with the assay for cellular protein concentration. The data demonstrate that Gelfoam is a suitable support growth matrix for the in vitro culture of bovine pulmonary artery endothelial cells.  相似文献   

9.
In this study specific high affinity binding sites for atrial natriuretic factor (rANF(99-126] have been identified on cultured endothelial cells of bovine pulmonary artery origin (BPAEC). A time-dependent rise in cellular cGMP levels stimulated by rANF(99-126) was followed by release of the nucleotide into the incubation medium. The use of truncated, ring-deleted and linear atrial peptide analogs in competitive displacement analysis and measurement of cGMP accumulation indicated that only a minor proportion (5-11%) of the available receptor pool was of the ANF-B receptor subtype, linked to guanylate cyclase, with the remaining major proportion possibly of the ANF-C (clearance) receptor subtype. The existence of two ANF receptor subtypes in this cell culture model would suggest a significant role for the circulating peptide in modulation of pulmonary endothelial cell function, which would influence or complement its direct actions on the underlying vasculature of the pulmonary circulation.  相似文献   

10.
To evaluate the regulation of endothelial cell Cu,Zn-SOD, we have exposed bovine pulmonary artery endothelial cells in culture to hyperoxia and hypoxia, second messengers or related agonists, hormones, free radical generating systems, endotoxin, and cytokines and have measured Cu,Zn-SOD protein of these cells by an ELISA developed in our laboratory. Control preconfluent and confluent cells in room air contained 196 +/- 18 ng Cu,Zn-SOD/10(6) cells. A23187 (0.33 microM), forskolin (10 microM), isobutylmethylxanthine (0.1 mM), dexamethasone (1 microM), triiodothyronine (1 microM) and retinoic acid (1 microM) failed to alter this level of Cu,Zn-SOD. Exposure to anoxia and hyperoxia both elevated the level approximately 1.5-2.0-fold over 20% oxygen-exposed controls at 48-72 hr. Similarly, exposures to glucose oxidase (0.0075 units/ml), menadione (12.5 microM), xanthine-xanthine oxidase (10 microM, 0.03 units/ml) and H2O2 (0.0005%) increased the level up to two-threefold over controls at 24-48 hr. Lipopolysaccharide, TGF beta 1, TNF alpha, and Il-1 also increased levels of cellular Cu,Zn-SOD, but only in proliferating cells. Il-2, Il-4, interferon-gamma, and GM-CSF had no effect on Cu,Zn-SOD. All treatments that elevated SOD resulted in inhibition of cellular growth, but decreased growth of cells at confluence alone was not associated with increased Cu,Zn-SOD. We propose from these studies that Cu,Zn-SOD of endothelial cells is not under conventional second messenger or hormonal regulation, but that up-regulation of the enzyme is associated with (and perhaps stimulated by) free-radical or oxidant production that also may be influenced by availability of certain cytokines under replicating conditions.  相似文献   

11.
Crystallographic studies have elucidated the binding mechanism of forskolin and P-site inhibitors to adenylyl cyclase. Accordingly, computer-assisted drug design has enabled us to identify isoform-selective regulators of adenylyl cyclase. After examining more than 200 newly synthesized derivatives of forskolin, we found that the modification at the positions of C6 and C7, in general, enhances isoform selectivity. The 6-(3-dimethylaminopropionyl) modification led to an enhanced selectivity for type V, whereas 6-[N-(2-isothiocyanatoethyl) aminocarbonyl] and 6-(4-acrylbutyryl) modification led to an enhanced selectivity for type II. In contrast, 2'-deoxyadenosine 3'-monophosphate, a classical and 3'-phosphate-substituted P-site inhibitor, demonstrated a 27-fold selectivity for inhibiting type V relative to type II, whereas 9-(tetrahydro-2-furyl) adenine, a ribose-substituted P-site ligand, showed a markedly increased, 130-fold selectivity for inhibiting type V. Consequently, on the basis of the pharmacophore analysis of 9-(tetrahydro-2-furyl) adenine and adenylyl cyclase, a novel non-nucleoside inhibitor, 2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), was identified after virtual screening of more than 850,000 compounds. NKY80 demonstrated a 210-fold selectivity for inhibiting type V relative to type II. More importantly, the combination of a type III-selective forskolin derivative and 9-(tetrahydro-2-furyl) adenine or NKY80 demonstrated a further enhanced selectivity for type III stimulation over other isoforms. Our data suggest the feasibility of adenylyl cyclase isoform-targeted regulation of cyclic AMP signaling by pharmacological reagents, either alone or in combination.  相似文献   

12.
13.
Cyclic AMP (cAMP) is an important physiological growth inhibitor of lymphoid cells, and the cAMP/protein kinase A (PKA) pathway is disrupted in several immunological disorders and cancers. Epstein Barr virus (EBV) infection of B lymphocytes is responsible for the development of lymphoproliferative disease as well as certain B-lymphoid malignancies. Here we hypothesized that EBV infection might render B lymphocytes resistant to cAMP/PKA-mediated growth inhibition. To test this, we assessed the growth-inhibitory response of cAMP-elevating compounds such as forskolin and isoproterenol, as well as the PKA activator 8-CPT-cAMP in normal B lymphocytes, EBV-infected B cells and in the EBV-negative B lymphoid cell line Reh. We could demonstrate that EBV infection indeed abolished cAMP-mediated growth inhibition of B cells. The defect was pinpointed to defective adenylyl cyclase (AC) activation by forskolin and isoproterenol, resulting in reduced formation of cAMP and lack of PKA activation and CREB phosphorylation. In contrast, 8-CPT-cAMP which directly activates PKA was able to inhibit EBV-infected B cell growth. The physiological implications of these results were underlined by the observation that the ability of forskolin to inhibit camptothecin-induced apoptosis was abolished in EBV-infected B cells. We conclude that EBV infection of B cells abrogates the activation of AC and thereby cAMP formation, and that this dysfunction renders the cells resistant to growth inhibition via the cAMP/PKA pathway.  相似文献   

14.
The activation of endothelial cells by endothelium-dependent vasodilators has been investigated using bioassay, patch clamp and 45Ca flux methods. Cultured pulmonary artery endothelial cells have been demonstrated to release EDRF in response to thrombin, bradykinin, ATP and the calcium ionophore A23187. The resting membrane potential of the endothelial cells was -56 mV and the cells were depolarized by increasing extracellular K+ or by the addition of (0.1-1.0 mM)Ba2+ to the bathing solution. The electrophysiological properties of the cultured endothelial cells suggest that the membrane potential is maintained by an inward rectifying K+ channel with a mean single channel conductance of 35.6 pS. The absence of a depolarization-activated inward current and the reduction of 45Ca influx with high K+ solution suggests that there are no functional voltage-dependent calcium or sodium channels. Thrombin and bradykinin were shown to evoke not only an inward current (carried by Na+ and Ca2+) but also an increase in 45Ca influx suggesting that the increase in intracellular calcium necessary for EDRF release is mediated by an opening of a receptor operated channel. High doses of thrombin and bradykinin induced intracellular calcium release, however, at low doses of thrombin no intracellular calcium release was observed. We propose that the increased cytosolic calcium concentration in endothelial cells induced by endothelium dependent vasodilators is due to the influx of Ca2+ through a receptor operated ion channel and to a lesser degree to intracellular release of calcium from a yet undefined intracellular store.  相似文献   

15.
《Life sciences》1992,50(5):PL19-PL24
The mechanism by which the inhibitory effect of d-ala2-met-enkephalinamide (DALA) on lacrimal acinar adenylyl cyclase is exerted was assessed in membrane preparations by a cAMP protein binding assay. Inhibition by the analogue was GTP-dependent with a significant enhancement of the inhibitory effect by GTP. While pretreatment of membranes with either cholera or pertussis toxin resulted in stimulation of adenylyl cyclase activity, modification of the G subunit by pertussis-toxin catalyzed ADP-ribosylation did not effect the hormonal inhibition of adenylyl cyclase. Incubation of membranes with manganese, however, prevented the inhibitory action of DALA in addition to enhancing basal and forskolin-stimulated adenylyl cyclase activity. The results suggest that the inhibitory effect of DALA in lacrimal acinar cells is exerted via a mechanism other than pertussis-toxin sensitive coupling of the receptor to adenylyl cyclase through Gi. The mechanism may be effected through a pertussis-toxin insensitive G protein, through an interaction with Gi that is pertussis-toxin insensitive, or through an interaction with the catalytic subunit of adenylyl cyclase.  相似文献   

16.
The endothelial cell has a unique intrinsic feature: it produces a most potent vasopressor peptide hormone, endothelin (ET-1), yet it also contains a signaling system of an equally potent hypotensive hormone, atrial natriuretic factor (ANF). This raises two related curious questions: does the endothelial cell also contain an ET-1 signaling system? If yes, how do the two systems interact with each other? The present investigation was undertaken to determine such a possibility. Bovine pulmonary artery endothelial (BPAE) cells were chosen as a model system. Identity of the ANF receptor guanylate cyclase was probed with a specific polyclonal antibody to the 180 kDa membrane guanylate cyclase (mGC) ANF receptor. A Western-blot analysis of GTP-affinity-purified endothelial cell membrane proteins recognized a 180 kDa band; the same antibody inhibited the ANF-stimulated guanylate cyclase activity; the ANF-dependent rise of cyclic GMP in the intact cells was dose-dependent. By affinity cross-linking technique, a predominant 55 kDa membrane protein band was specifically labeled with [125I]ET-1. ET-1 treatment of the cells showed a migration of the protein kinase C (PKC) activity from cytosol to the plasma membrane; ET-1 inhibited the ANF-dependent production of cyclic GMP in a dose-dependent fashion with an EC50 of 100 nM. This inhibitory effect was duplicated by phorbol 12-myristate 13-acetate (PMA), a known PKC-activator. The EC50 of PMA was 5 nM. A PKC inhibitor, 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H-7), blocked the PMA-dependent attenuation of ANF-dependent cyclic GMP formation. These results demonstrate that the 180 kDa mGC-coupled ANF and ET-1 signaling systems coexist in endothelial cells and that the ET-1 signal negates the ANF-dependent guanylate cyclase activity and cyclic GMP formation. Furthermore, these results support the paracrine and/or autocrine role of ET-1.  相似文献   

17.
Sodium arsenite is one of a number of agents reported to induce a 30-34 kDa 'stress' protein in cells. Other agents which induce this stress protein, including diethyl maleate (DEM) and H2O2, have also been reported to be inducers of cystine transport in fibroblasts, macrophages, endothelial cells and other cell types. We have determined that micromolar levels of sodium arsenite increase cystine transport in bovine pulmonary artery endothelial cells (BPAEC), resulting in increases in intracellular glutathione (GSH). The increase in cystine transport appears to be due to stimulation of the synthesis of a protein analogous to the xc- transport system, a sodium-independent system specific for cystine and glutamate. We have determined that this stimulation is maximal between 8-16 h after addition of sodium arsenite and is inhibited by exogenous GSH. Others have reported that synthesis of the 30-34 kDa stress protein is maximal between 2-4 h and returns to baseline by 6-10 h. We conclude that cystine transport may be considered a 'secondary' stress response and is likely to be modulated by sulfhydryl-reactive agents.  相似文献   

18.
In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.  相似文献   

19.
Nitric oxide (NO) is produced by NO synthase (NOS) from L-arginine (L-Arg). Alternatively, L-Arg can be metabolized by arginase to produce L-ornithine and urea. Arginase (AR) exists in two isoforms, ARI and ARII. We hypothesized that inhibiting AR with L-valine (L-Val) would increase NO production in bovine pulmonary arterial endothelial cells (bPAEC). bPAEC were grown to confluence in either regular medium (EGM; control) or EGM with lipopolysaccharide and tumor necrosis factor-alpha (L/T) added. Treatment of bPAEC with L/T resulted in greater ARI protein expression and ARII mRNA expression than in control bPAEC. Addition of L-Val to the medium led to a concentration-dependent decrease in urea production and a concentration-dependent increase in NO production in both control and L/T-treated bPAEC. In a second set of experiments, control and L/T bPAEC were grown in EGM, EGM with 30 mM L-Val, EGM with 10 mM L-Arg, or EGM with both 10 mM L-Arg and 30 mM L-Val. In both control and L/T bPAEC, treatment with L-Val decreased urea production and increased NO production. Treatment with L-Arg increased both urea and NO production. The addition of the combination L-Arg and L-Val decreased urea production compared with the addition of L-Arg alone and increased NO production compared with L-Val alone. These data suggest that competition for intracellular L-Arg by AR may be involved in the regulation of NOS activity in control bPAEC and in response to L/T treatment.  相似文献   

20.
We have previously described a cDNA which encodes a binding site with the pharmacology of the D2-dopamine receptor (Bunzow, J. R., VanTol, H. H. M., Grandy, D. K., Albert, P., Salon, J., Christie, M., Machida, C., Neve, K. A., and Civelli, O. (1988) Nature 336, 783-787). We demonstrate here that this protein is a functional receptor, i.e. it couples to G-proteins to inhibit cAMP generation and hormone secretion. The cDNA was expressed in GH4C1 cells, a rat somatomammotrophic cell strain which lacks dopamine receptors. Stable transfectants were isolated and one clone, GH4ZR7, which had the highest levels of D2-dopamine receptor mRNA on Northern blot, was studied in detail. Binding of D2-dopamine antagonist [3H]spiperone to membranes isolated from GH4ZR7 cells was saturable, with KD = 96 pM, and Bmax = 2300 fmol/mg protein. Addition of GTP/NaCl increased the IC50 value for dopamine competition for [3H]spiperone binding by 2-fold, indicating that the D2-dopamine receptor interacts with one or more G-proteins. To assess the function of the dopamine-binding site, acute biological actions of dopamine were characterized in GH4ZR7 cells. Dopamine, at concentrations found in vivo, decreased resting intra- and extracellular cAMP levels (EC50 = 8 +/- 2 nM) by 50-70% and blocked completely vasoactive intestinal peptide (VIP) induced enhancement of cAMP levels (EC50 = 6 +/- 1 nM). Antagonism of dopamine-induced inhibition of VIP-enhanced cAMP levels by spiperone, (+)-butaclamol, (-)-sulpiride, and SCH23390 occurred at concentrations expected from KI values for these antagonists at the D2-receptor and was stereoselective. Dopamine (as well as several D2-selective agonists) inhibited forskolin-stimulated adenylate cyclase activity by 45 +/- 6%, with EC50 of 500-800 nM in GH4ZR7 membranes. Dopaminergic inhibition of cellular cAMP levels and of adenylyl cyclase activity in membrane preparations was abolished by pretreatment with pertussis toxin (50 ng/ml, 16 h). Dopamine (200 nM) abolished VIP- and thyrotropin-releasing hormone-induced acute prolactin release. These data show conclusively that the cDNA clone encodes a functional dopamine-D2 receptor which couples to G-proteins to inhibit adenylyl cyclase and both cAMP-dependent and cAMP-independent hormone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号