首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of the Plasmodium falciparum vaccine candidate antigen Pf155/RESA in the membrane of infected erythrocytes was analzyed by means of selective surface radioiodination and immunofluorescence of surface-modified cells. The lack of radiolabel in Pf155/RESA as well as its localization by immunofluorescence similar to that of the N-terminal region of erythrocyte band 3 suggests that the antigen is associated with the cytoplasmic phase of the erythrocyte membrane. In concordance with this, Pf155/RESA was detected by immunofluorescence on the surface of inside out membrane vesicles from P. falciparum-infected erythrocytes. Pf155/RESA from spent culture medium also bound to inside out membrane vesicles of normal erythrocytes as well as to cytoskeletal shells of such vesicles, but failed to bind to sealed right-side out membrane vesicles. Depletion of spectrin from the vesicles abolished antigen binding, suggesting that Pf155/RESA association with the erythrocyte cytoskeleton is mediated by spectrin.  相似文献   

2.
In Plasmodium falciparum, the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA), a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
ABSTRACT. In Plasmodium falciparum. the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA). a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes. The rhoptry complex also binds to membrane and inside-out-vesicles prepared from human erythrocytes and erythrocytes from other species. The rhoptry complex associated with the erythrocyte membrane in ring-infected erythrocytes is accessible to cleavage by phospholipase A. Studies are in progress to identify the molecular epitopes on the individual proteins within the complex responsible for lipid interaction in the erythrocyte bilayer and to determine the specificity of the phospholipid interaction using erythrocyte phospholipids.  相似文献   

4.

Background

Modulation of infected host cells by intracellular pathogens is a prerequisite for successful establishment of infection. In the human malaria parasite Plasmodium falciparum, potential candidates for erythrocyte remodelling include the apicomplexan-specific FIKK kinase family (20 members), several of which have been demonstrated to be transported into the erythrocyte cytoplasm via Maurer''s clefts.

Methodology

In the current work, we have knocked out two members of this gene family (Pf fikk7.1 and Pf fikk12), whose products are localized at the inner face of the erythrocyte membrane. Both mutant parasite lines were viable and erythrocytes infected with these parasites showed no detectable alteration in their ability to adhere in vitro to endothelial receptors such as chondroitin sulfate A and CD36. However, we observed sizeable decreases in the rigidity of infected erythrocytes in both knockout lines. Mutant parasites were further analyzed using a phospho-proteomic approach, which revealed distinct phosphorylation profiles in ghost preparations of infected erythrocytes. Knockout parasites showed a significant reduction in the level of phosphorylation of a protein of approximately 80 kDa for FIKK12-KO in trophozoite stage and a large protein of about 300 kDa for FIKK7.1-KO in schizont stage.

Conclusions

Our results suggest that FIKK members phosphorylate different membrane skeleton proteins of the infected erythrocyte in a stage-specific manner, inducing alterations in the mechanical properties of the parasite-infected red blood cell. This suggests that these host cell modifications may contribute to the parasites'' survival in the circulation of the human host.  相似文献   

5.
A ring-infected erythrocyte surface antigen (RESA) has been detected by modified immunofluorescence assay in erythrocytes infected with the simian malaria parasite, Plasmodium fragile. This RESA, of Mr 95,000, shares many characteristics with the RESA initially found in the human malaria parasite P. falciparum. Both antigens are found in the membrane of erythrocytes infected with young asexual parasite stages, in merozoite-enriched preparations, and in parasite culture supernatant. Since the RESA of P. falciparum has been shown to confer protective immunity and since P. fragile infection of rhesus monkeys mimics P. falciparum infection in humans, the finding of a RESA in P. fragile underlines the importance of this species as an animal model for antimalarial vaccines.  相似文献   

6.
The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16-20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 ((101)NAEKI LGFDD KNILE ALDLFY(120)), 30334 ((281)RVTWK KLRTK MIKAL KKSLTY(300)) and 30342 ((431)SSPQR LKFTA GGGFC GKLRNY(450)) bind with high activity and saturability, presenting nM affinity constants. These peptides contain alpha-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.  相似文献   

7.
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors containing sialic acid. In contrast, other strains can efficiently invade neuraminidase-treated erythrocytes and hence are sialic acid-independent. The molecular interactions that allow P. falciparum to differentially utilize receptors for merozoite invasion are not understood. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1, a member of this protein family, appears to be expressed in all parasite lines analysed but there are marked differences in the level of expression between different strains. We have used targeted gene disruption of the PfRh1 gene in P. falciparum to show that the encoded protein is required for sialic acid-dependent invasion of human erythrocytes. The DeltaPfRh1 parasites are able to invade normally; however, they utilize a pattern of ligand-receptor interactions that are more neuraminidase-resistant. Current data suggest a strategy based on the differential function of specific PfRh proteins has evolved to allow P. falciparum parasites to utilize alternative receptors on the erythrocyte surface for evasion of receptor polymorphisms and the host immune system.  相似文献   

8.
The recognition and invasion of human erythrocytes by the most lethal malaria parasite Plasmodium falciparum is dependent on multiple ligand-receptor interactions. Members of the erythrocyte binding-like (ebl) family, including the erythrocyte binding antigen-175 (EBA-175), are responsible for high affinity binding to glycoproteins on the surface of the erythrocyte. Here we describe a paralogue of EBA-175 and show that this protein (EBA-181/JESEBL) binds in a sialic acid-dependent manner to erythrocytes. EBA-181 is expressed at the same time as EBA-175 and co-localizes with this protein in the microneme organelles of asexual stage parasites. The receptor binding specificity of EBA-181 to erythrocytes differs from other members of the ebl family and is trypsin-resistant and chymotrypsin-sensitive. Furthermore, using glycophorin B-deficient erythrocytes we show that binding of EBA-181 is not dependent on this sialoglycoprotein. The level of expression of EBA-181 differs among parasite lines, and the importance of this ligand for invasion appears to be strain-dependent as the EBA-181 gene can be disrupted in W2mef parasites, without affecting the invasion phenotype, but cannot be targeted in 3D7 parasites.  相似文献   

9.
Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor-ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their dependency on these different pathways. Gene disruption of a key invasion ligand in the 3D7 parasite strain, the P. falciparum reticulocyte binding-like homolog 2b (PfRh2b), resulted in the parasite invading via a novel pathway. Here, we show results that suggest the molecular basis for this novel pathway is not due to a molecular switch but is instead mediated by the redeployment of machinery already present in the parent parasite but masked by the dominant role of PfRh2b. This would suggest that interactions directing invasion are organized hierarchically, where silencing of dominant invasion ligands reveal underlying alternative pathways. This provides wild parasites with the ability to adapt to immune-mediated selection or polymorphism in erythrocyte receptors and has implications for the use of invasion-related molecules in candidate vaccines.  相似文献   

10.
We used the combination of an atomic force microscope and a light microscope equipped with epifluorescence to serially image Plasmodium falciparum-infected erythrocytes. This procedure allowed us to determine unambiguously the presence and developmental stage of the malaria parasite as well as the number and size of knobs in singly, doubly, and triply infected erythrocytes. Knobs are not present during the ring stage of a malaria infection but a lesion resulting from invasion by a merozoite is clearly visible on the erythrocyte surface. This lesion is visible into the late trophozoite stage of infection. Knobs begin to form during the early trophozoite stage of infection and have a single-unit structure. Our data suggest the possibility that a two-unit structure of knobs, which was reported by Aikawa et al. (1996, Exp. Parasitol. 84, 339-343) using atomic force microscopy, appears to be a double-tipped image. The number of knobs per unit of host cell surface area is directly proportional to parasite number in both early and late trophozoite stages. These results indicate that knob formation by one parasite does not influence knob formation by other parasites in a multiply infected erythrocyte. In addition, knob volume is not influenced by either parasite stage or number at the late trophozoite stage, indicating that the number of component molecules per knob is constant throughout the parasite maturation process.  相似文献   

11.
The human mAb 33G2 has high capacity to inhibit in vitro invasion of erythrocytes by Plasmodium falciparum merozoites and, thus, is of special interest with regard to protective immunity against the parasite. In order to obtain more information about asexual blood stage Ag of P. falciparum that are seen by this antibody, material from synchronized P. falciparum cultures was studied by immunofluorescence, immunoelectron microscopy, and immunoblotting. Reactivity was mainly confined to the membrane of infected erythrocytes. Soon after merozoite invasion the antibody stained the erythrocyte membrane. This membrane-associated staining faded during intracellular development of the parasites. Beginning about 18 h after invasion, a dotted pattern appeared which increased in strength with time and persisted to schizont rupture. Pf155/RESA was the major Ag recognized in immunoblots of parasites collected throughout the entire erythrocytic cycle, although other polypeptides also bound the antibody. Among these was a 260-kDa polypeptide found in late trophozoites and schizonts. The specificity of the antibody was analyzed with synthetic peptides corresponding to repeated sequences in the P. falciparum Ag Pf155/RESA, Pf11.1, and Ag332. Synthetic peptides related to Ag332 were the most efficient inhibitors of antibody binding in immunofluorescence studies and cell ELISA. A beta-galactosidase-Ag332 fusion protein was also efficient in reversing reinvasion inhibition caused by 33G2. These results define a family of cross-reactive P. falciparum Ag recognized by mAb 33G2 and suggest that Ag332 was its original target.  相似文献   

12.
In this paper, in vivo data are presented that suggest a role for host recognition of erythrocyte band 3 in the control of malaria parasitaemia. The course of Plasmodium chabaudi chabaudi AS acute infection in CBA/Ca mice was suppressed or enhanced as a result of treatment on two occasions with enriched preparations of normal erythrocyte band 3 in adjuvant. Co-treatment with band 3 and a recombinant polypeptide encoding the C-terminal region of the P. c. chabaudi AS merozoite surface protein 1, which on its own had no clear effect on parasitaemia, appeared to modulate band 3-induced inhibition. Despite several-fold reductions in ascending parasitaemias in some band 3-immunized groups, there was a lack of obvious or unexpected anaemia prior to, or during infection, indicating a degree of specificity in the parasitaemia modifying response for infected rather than uninfected erythrocytes. These findings support a role for modified host recognition of erythrocyte band 3 in the partial immunity that transcends phenotypic and genotypic antigenic variation by malaria parasites.  相似文献   

13.
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.  相似文献   

14.
15.
Variant antigens are present on the surface of Plasmodium knowlesi malaria-infected erythrocytes as detected by the schizont-infected cell agglutination (SICA) assay. We found that parasitized erythrocytes passaged in splenectomized monkeys did not agglutinate with immune sera. On the first passage from intact to splenectomized monkeys, the SICA titers decreased 4- to 16-fold; after the second and subsequent passages in splenectomized monkeys, the infected cells became nonagglutinable to all sera tested, including sera from animals infected with the nonagglutinating parasites. This loss of agglutinability could have resulted from selection of a genetically distinct subpopulation of the original parasites or the ability of the original parasites to alter their phenotypic expression. We have designated the new nonagglutinable phenotype, SICA [-], and the agglutinable phenotype, SICA [+]. The loss of agglutinability indicates that the variant antigen normally expressed on the erythrocyte membrane of infected cells is altered or absent. Because SICA [-] parasites developed in the absence of the spleen, the major organ of host defense against malaria, then this organ may in some manner influence or modulate antigenic expression in P. knowlesi and possibly other malaria parasites.  相似文献   

16.
Time-resolved phosphorescence anisotropy was used to study the molecular organisation of band 3 in the erythrocyte membrane. Three different rotational relaxation regimes of mobile band 3 were resolved. These populations may represent different aggregation states of band 3 within the membrane, or they may result from association of band 3 with other proteins at the cytoplasmic surface. The polycation spermine decreases the apparent mobility of band 3 by a mechanism that does not involve the underlying cytoskeleton. A monoclonal antibody directed against the cytoplasmic portion of band 3 can also cause an increase in the immobile fraction of band 3 molecules. This monoclonal antibody will inhibit invasion of erythrocytes by malaria parasites. Membranes prepared from erythrocytes infected with mature stages of the malaria parasite, Plasmodium falciparum, show altered dynamic properties corresponding to a marked restriction of band 3 mobility.  相似文献   

17.

Background

The malaria parasite Plasmodium falciparum EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains.

Methods and Findings

Five mAbs specific for F1 or F2 were generated. Three mAbs specific for F2 potently blocked binding of EBA-175 to erythrocytes, and merozoite invasion of erythrocytes (IC50 10 to 100 µg/ml IgG in growth inhibition assays). A mAb specific for F1 blocked EBA-175 binding and merozoite invasion less effectively. The difference observed between the IC50 of F1 and F2 mAbs was not due to differing association and disassociation rates as determined by surface plasmon resonance. Four of the mAbs recognized conformation-dependent epitopes within F1 or F2. Used in combination, F1 and F2 mAbs blocked the binding of native EBA-175 to erythrocytes and inhibited parasite invasion synergistically in vitro. MAb R217, the most potent, did not recognize sporozoites, 3-day hepatocyte stage parasites, nor rings, trophozoites, gametocytes, retorts, ookinetes, and oocysts but recognized 6-day hepatocyte stage parasites, and schizonts. Even though efficient at blocking binding to erythrocytes and inhibiting invasion into erythrocytes, MAb R217 did not inhibit sporozoite invasion and development in hepatocytes in vitro.

Conclusions

The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes.  相似文献   

18.
The purpose of the present study was to confirm the effectiveness of saponin hemolysis for concentrating ring-infected erythrocytes in Plasmodium falciparum cultures and to determine the actual numbers of the enriched parasites, not just percentage parasitemia. This is important because various molecular biology and vaccine development against malaria require useable quantities of pure culture with minimal number of uninfected erythrocytes at all stages. Synchronized cultures of three P. falciparum strains were exposed to 0.015% isotonic saponin solution for 30 minutes on ice. They were centrifuged and the pellets were treated again with saponin solution for 3-7 minutes. Initially, most of the cultures contained approximately 10(10) erythrocytes and 1-7% parasitemia, but at the end of the enrichment up to 10(8) of erythrocytes containing 90-99.8% parasitemia were recovered (maximal enrichment). From microscopic examination of the cells it was calculated that the hemolysis rate of uninfected and infected erythrocytes was circa 27 to 1, which could account for the enrichment. Studies by other investigators have suggested that P. falciparum merozoite invasion decreases erythrocyte membrane lipids, and it has been reported that reduction of membrane cholesterol could make erythrocytes saponin-resistant. The possibility that merozoite invasion made erythrocytes partially resistant to saponin hemolysis was strengthened by the observation that the proportions of multiple infections increased significantly in the enriched cultures. However, mature asexual parasites could not be concentrated by this method, suggesting possible differences between the membranes of erythrocytes containing ring forms and those of trophozoites and schizonts. Ring-infected erythrocytes freshly from malaria patients could also not be concentrated by the method described here, suggesting that the ability to induce saponin resistance in erythrocytes was acquired by the parasites in vitro.  相似文献   

19.
Invasion of erythrocytes by malaria parasites is known to be blocked by proteolytic digestion of merozoite receptors allegedly present in red cell membranes. This information was used in the present work to develop a simple and convenient assay for parasite invasion into red blood cells and for evaluating the role played by red cell membrane components in this process. Synchronized in vitro cultures of Plasmodium falciparum containing only ring stages were subjected to either trypsin or pronase digestion, a treatment that neither affected ring development into schizonts nor mature merozoite release. Cells from this culture were not invaded by the released merozoites. However, upon addition of untreated human red blood cells, marked invasion was observed, either microscopically or as [3H]isoleucine incorporation. The new assay circumvents the need for separating schizonts from uninfected cells and provides a convenient means for assessing how chemical and biochemical manipulation of red blood cells affects their invasiveness by parasites. Using this assay, we verified that sheep and rabbit erythrocytes were resistant to invasion, as were human erythrocytes which had been treated with trypsin, pronase or neuraminidase. Chymotrypsin digestion of human erythrocytes was without effect on invasion. Human erythrocytes which were chemically modified with the impermeant amino reactive reagent H2DIDS, or with the crosslinker of spectrin, TCEA, were found to resist invasion. The results underscore the involvement of surface membrane components as well as of elements of the cytoskeleton in the process of parasite invasion into erythrocytes.  相似文献   

20.
Infections with the human malaria Plasmodium falciparum are characterized by the retention of parasitized erythrocytes in tissue capillaries and venules. Erythrocytes containing trophozoites and schizonts attach to the endothelial cells that line these vessels by means of structurally identifiable excrescences present on the surface of the infected cell. Such excrescences, commonly called knobs, are visible by means of scanning or transmission electron microscopy. The biochemical mechanisms responsible for erythrocyte adherence to the endothelial cell are still undefined. In an attempt to identify the cytoadhesive molecule on the surface of the infected cell, we have prepared monoclonal antibodies to knob-bearing erythrocytes infected with the FCR-3 strain of P. falciparum. One of these monoclonal antibodies, designed 4A3, is an IgM that reacts (by means of immunofluorescence) with the surface of unfixed erythrocytes bearing mature parasites of the knobby line; it does not react with knobless lines or uninfected erythrocytes. By immunoelectron microscopy the monoclonal antibody 4A3 was localized to the knob region. In an in vitro cytoadherence assay, the monoclonal antibody partially blocked the binding of knob-bearing cells (FCR-3 strain) to formalin-fixed amelanotic melanoma cells. The monoclonal antibody was used to immunoprecipitate a protein from extracts of knobby erythrocytes that had been previously surface iodinated. By a two-dimensional peptide mapping technique, the antigen recognized by the monoclonal antibody was found to be structurally related to band 3 protein, the human erythrocyte anion transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号