首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data generated in the new National Cancer Institute drug evaluation program, which is based on inhibition of cell growth in 60 human tumor cell lines, were used to compare new compounds with agents of known mechanism of action in terms of their differential cytotoxicity. Two marine natural products, halichondrin B and homohalichondrin B, appeared repeatedly when the data base was probed with known antimitotic agents. We confirmed that both compounds were highly cytotoxic (IC50 values for L1210 murine leukemia cells of 0.3 and 1 nM, respectively), with accumulation of cells arrested in mitosis at toxic concentrations, that both inhibited the polymerization of purified tubulin, and that both inhibited microtubule assembly dependent on microtubule-associated proteins. Limited amounts of homohalichondrin B, the less active agent, were available, so only halichondrin B was studied in detail. Halichondrin B did not interfere with colchicine binding to tubulin, but it was a noncompetitive inhibitor of the binding of vinblastine to tubulin (apparent Ki, 5.0 microM). Halichondrin B was therefore compared with other agents which interfere with the binding of vinca alkaloids to tubulin (vinblastine, maytansine, dolastatin 10, phomopsin A, rhizoxin) in terms of its effects on tubulin polymerization, inhibition of GTP hydrolysis, inhibition of nucleotide exchange, and stabilization of tubulin, as well as the quantitative assessment of its effects on vinca alkaloid binding and inhibition of cell growth. Since halichondrin B was originally isolated from the same organism as the phosphatase inhibitor okadaic acid, and since it is about 50-fold more effective than okadaic acid as an inhibitor of L1210 cell growth, perturbations of cellular microtubules observed following treatment with okadaic acid should be interpreted cautiously.  相似文献   

2.
Maytansine inhibits nucleotide binding at the exchangeable site of tubulin   总被引:1,自引:0,他引:1  
The antineoplastic drug maytansine inhibits the binding of exogenously added radiolabeled GDP and GTP to tubulin (50% inhibition at 9-10 microM drug at 0 degrees). Vinblastine was 1/10-th as inhibitory. Neither maytansine nor vinblastine displaced GDP from tubulin, and both drugs virtually eliminated dissociation of radiolabeled GDP from the exchangeable site. Maytansine also inhibits binding of nucleotides to a vacant exchangeable site. Maytansine thus prevents nucleotide exit and entry at the exchangeable site because of a direct physical obstruction or a conformational change in the tubulin molecule.  相似文献   

3.
Rhizoxin binding to tubulin at the maytansine-binding site   总被引:1,自引:0,他引:1  
The binding of rhizoxin, a potent inhibitor of mitosis and in vitro microtubule assembly, to porcine brain tubulin was studied. Tubulin possesses one binding site for rhizoxin per molecule with a dissociation constant (Kd) of 1.7.10(-7) M. Ansamitocin P-3, a homologue of maytansine, was a competitive inhibitor of rhizoxin binding, with an inhibition constant of 1.3.10(-7) M. Vinblastine also inhibited rhizoxin binding, but was not fully competitive, and the inhibition constant was 2.9.10(-6) M. In contrast, both rhizoxin and ansamitocin P-3 were potent inhibitors of vinblastine binding. Rhizoxin inhibited tau-promoted tubulin assembly, but it, differing from vinblastine, did not induce tubulin aggregation into spirals, even at a concentration as high as 2.10(-5) M. In addition, rhizoxin strongly inhibited vinblastine-induced tau-dependent tubulin aggregation. Rhizoxin binding to tubulin was completely independent from colchicine binding. These effects resemble those of maytansine. The results suggested that rhizoxin binds to the maytansine-binding site and that the binding sites of rhizoxin and vinblastine are not the same.  相似文献   

4.
The antimitotic depsipeptide dolastatin 15 was radiolabeled with tritium in its amino-terminal dolavaline residue. Dolastatin 15, although potently cytotoxic, is a relatively weak inhibitor of tubulin assembly and does not inhibit the binding of any other ligand to tubulin. The only methodology found to demonstrate an interaction between the depsipeptide and tubulin was Hummel-Dreyer equilibrium chromatography on Sephadex G-50 superfine. The average apparent Kd value obtained in these studies was about 30 microM, with no difference observed when column size or tubulin concentration was varied. This relatively high dissociation constant is consistent with the apparent weak interaction of dolastatin 15 with tubulin demonstrated indirectly in the assembly assay. We attempted to gain insight into the binding site for dolastatin 15 on tubulin by studying inhibitory effects of other drugs when the gel filtration column was equilibrated with both [3H]dolastatin 15 and a second, nonradiolabeled drug. No inhibition was detected with either the colchicine site agent combretastatin A-4 or with an analog of the antimitotic marine peptide diazonamide A (both the analog and diazonamide A are potent inhibitors of tubulin assembly). Weak inhibition was observed with cemadotin, a structural analog of dolastatin 15, and with the depsipeptide cryptophycin 1. Moderate inhibition occurred with vinblastine and vincristine, and strong inhibition with maytansine, halichondrin B, and the peptides dolastatin 10 and phomopsin A. These observations suggest that the binding site(s) for peptide and depsipeptide antimitotic drugs may consist of a series of overlapping domains rather than a well-defined locus on the surface of beta-tubulin.  相似文献   

5.
Effects of inhibitors of tubulin polymerization on GTP hydrolysis   总被引:2,自引:0,他引:2  
The effects of a number of antimitotic drugs on the GTPase activity of tubulin were examined. The previously reported stimulation with colchicine and inhibition with podophyllotoxin and vinblastine wee confirmed. Maytansine, which competes with vinblastine in binding to tubulin, was comparable to the latter in inhibiting GTP hydrolysis. Nocodazole, which competes with colchicine in binding to tubulin, was significantly superior to colchicine in enhancing GTP hydrolysis. This superiority arose from the more rapid bindng of nocodazole to tubulin, as the two drugs had comparable activity when drug and tubulin were preincubated prior to the addition of GTP. Both colchicine and podophyllotoxin contain a trimethoxybenzene ring, while the closest structural analogy of nocodazole to colchicine includes the trimethoxybenzene ring. To explore this apparent paradox, we examined a number of simpler colchicine analogs for their effects on tubulin-dependent GTP hydrolysis. While tropolone was without effect, 3,4,5-trimethoxybenzaldehyde and 2,3,4-trimethoxybenzaldehyde stimulated the reaction. We therefore conclude that the trimethoxybenzene ring of colchicine is primarily responsible for the drug's stimulation of the GTPase activity of tubulin and that the inhibitory effect of podophyllotoxin must derive from the latter's tetrahydronaphthol moiety.  相似文献   

6.
IKP104 is one of a group of tubulin-binding drugs whose interaction with tubulin suggests that it may bind to the protein at or close to the region where vinblastine binds. By itself IKP104 is a potent enhancer of tubulin decay as evidenced by the fact that it induces the exposure of the sulfhydryl groups and hydrophobic areas on tubulin. In this respect, IKP104 differs from vinblastine and other drugs such as phomopsin A, dolastatin 10, rhizoxin, and maytansine which are competitive or noncompetitive inhibitors of vinblastine binding. In contrast, however, in the presence of colchicine, IKP104 behaves differently and strongly stabilizes tubulin, to an extent much greater than does colchicine alone. IKP104 appears to have two classes of binding site on tubulin, differing in affinity; the acceleration of decay appears to be mediated by the low-affinity site (Chaudhuriet al., 1998,J. Protein Chem., in press). We investigated the relationship of the binding of IKP104 and vinblastine. We found that the high-affinity site or sites of IKP104 overlap with or interact with the vinblastine-binding sites, but that the low-affinity site is distinctly different.  相似文献   

7.
Bai R  Durso NA  Sackett DL  Hamel E 《Biochemistry》1999,38(43):14302-14310
The sponge-derived antimitotic tripeptide hemiasterlin was previously shown to inhibit tubulin polymerization. We have now demonstrated that hemiasterlin resembles most other antimitotic peptides in noncompetitively inhibiting the binding of vinblastine to tubulin (apparent K(i) value, 7.0 microM), competitively inhibiting the binding of dolastatin 10 to tubulin (apparent K(i) value, 2.0 microM), stabilizing the colchicine binding activity of tubulin, inhibiting nucleotide exchange on beta-tubulin, and inducing the formation of tubulin oligomers that are stable to gel filtration in the absence of free drug, even at low drug concentrations. The tubulin oligomerization reaction induced by hemiasterlin was compared to the reactions induced by dolastatin 10 and cryptophycin 1. Like dolastatin 10, hemiasterlin induced formation of a tubulin aggregate that had the morphological appearance primarily of ring-like structures with a diameter of about 40 nm, while the morphology of the cryptophycin 1 aggregate consisted primarily of smaller rings (diameter about 30 nm). However, the hemiasterlin aggregate differed from the dolastatin 10 aggregate in that its formation was not associated with turbidity development, and the morphology of the hemiasterlin aggregate (as opposed to the dolastatin 10 aggregate) did not change greatly when microtubule-associated proteins were present (tight coils and pinwheels are observed with dolastatin 10 but not with hemiasterlin or cryptophycin 1). Opacification of tubulin-dolastatin 10 mixtures was inhibited by hemiasterlin at 22 degrees C and stimulated at 0 degrees C, while cryptophycin 1 was inhibitory at both reaction temperatures.  相似文献   

8.
IKP104 is one of a group of tubulin-binding drugs whose interaction with tubulin suggests that it may bind to the protein at or close to the region where vinblastine binds. By itself IKP104 is a potent enhancer of tubulin decay as evidenced by the fact that it induces the exposure of the sulfhydryl groups and hydrophobic areas on tubulin. In this respect, IKP104 differs from vinblastine and other drugs such as phomopsin A, dolastatin 10, rhizoxin, and maytansine which are competitive or noncompetitive inhibitors of vinblastine binding. In contrast, however, in the presence of colchicine, IKP104 behaves differently and strongly stabilizes tubulin, to an extent much greater than does colchicine alone. IKP104 appears to have two classes of binding site on tubulin, differing in affinity; the acceleration of decay appears to be mediated by the low-affinity site (Chaudhuriet al., 1998,J. Protein Chem., in press). We investigated the relationship of the binding of IKP104 and vinblastine. We found that the high-affinity site or sites of IKP104 overlap with or interact with the vinblastine-binding sites, but that the low-affinity site is distinctly different.  相似文献   

9.
Tubulin with bound [5-3H]dolastatin 10 was exposed to ultraviolet light, and 8-10% of the bound drug cross-linked to the protein, most of it specifically. The primary cross-link was to the peptide spanning amino acid residues 2-31 of beta-tubulin, but the specific amino acid could not be identified. Indirect studies indicated that cross-link formation occurred between cysteine 12 and the thiazole moiety of dolastatin 10. An equipotent analog of dolastatin 10, lacking the thiazole ring, did not form an ultraviolet light-induced cross-link to beta-tubulin. Preillumination of tubulin with ultraviolet light, known to induce cross-link formation between cysteine 12 and exchangeable site nucleotide, inhibited the binding of [5-3H]dolastatin 10 and cross-link formation more potently than it inhibited the binding of colchicine or vinblastine to tubulin. Conversely, binding of dolastatin 10 to tubulin inhibited formation of the cross-link between cysteine 12 and the exchangeable site nucleotide. Dithiothreitol inhibited formation of the beta-tubulin/dolastatin 10 cross-link but not the beta-tubulin/exchangeable site nucleotide cross-link. Modeling studies revealed a highly favored binding site for dolastatin 10 at the + end of beta-tubulin in proximity to the exchangeable site GDP. Computational docking of an energy-minimized dolastatin 10 conformation at this site placed the thiazole ring of dolastatin 10 8-9 A from the sulfur atom of cysteine 12. Dolastatin 15 and cryptophycin 1 could also be docked into positions that overlapped more extensively with the docked dolastatin 10 than with each other. This result was consistent with the observed binding properties of these peptides.  相似文献   

10.
The ansa macrolide maytansine is a competitive inhibitor of vinblastine for binding to tubulin. Both drugs are potent inhibitors of microtubule assembly in vitro but maytansine, unlike vinblastine, is unable to induce tubulin aggregation or to stabilize colchicine binding. In this study, the effects of maytansine and vinblastine on the accessibility of tubulin's sulfhydryl groups were compared. It was found that 10 μm vinblastine inhibited the reaction of bovine brain tubulin with [14C]iodoacetamide by 45%. In contrast, maytansine, even up to 100 μm, had no effect on the reaction. However, when the two drugs were tested in combination, maytansine was a potent inhibitor of vinblastine's effect, consistent with the two drugs competing for the same or overlapping sites, but suggesting that the nature of the binding was different. In contrast, maytansine did not affect the suppression of alkylation induced by colchicine and podophylotoxin, consistent with these drugs binding to different sites. Maytansine and vinblastine were each able to increase the formation of β1 by the bifunctional reagent, N,N′-ethylenebis-(iodoacetamide); β1 is the designation for an electrophoretically faster migrating form of β-tubulin which apparently contains an intrachain crosslink. Thus, in at least the portion of the tubulin molecule involved in β1 formation, the two drugs have similar effects. Since maytansine does not appear to suppress any competing alkylation reactions, it is possible that the enhancement of β1 formation represents a genuine conformational effect. Since the sulfhydryl groups of tubulin may be involved in regulating microtubule assembly, it is likely that maytansine and vinblastine differ in the manner in which they inhibit microtubule assembly.  相似文献   

11.
Glycerol-induced tubulin polymerization supported by non-guanine nucleotides was examined. The electrophoretically homogeneous tubulin was devoid of nucleoside diphosphate kinase activity and 95% saturated with exchangeable GDP and nonexchangeable GTP. All purine ribonucleoside 5'-triphosphates were active but no polymerization occurred with CTP or UTP. All polymerization reactions, as a function of nucleotide concentration, were similar: above a minimum (threshold) concentration, as the amount of nucleotide increased the reaction became progressively more rapid and extensive with a progressively shorter nucleation period. Threshold concentrations of ATP, XTP, ITP and GTP were 0.6 mM, 0.3 mM, 30 microM and 7 microM, respectively. Most ribose- and polyphosphate-modified ATP analogs also supported polymerization at high concentrations, but the activity of these analogs relative to ATP was very similar to the activity of cognate GTP analogs relative to GTP. Polymerization with ATP was associated with an ATPase reaction. ATP hydrolysis was potently inhibited by GDP and GTP and altered by antimitotic drugs in parallel with the effects of these agents on GTP hydrolysis. Substantial amounts of [8-14C]GDP bound in the exchangeable site of tubulin were displaced during polymerization with GTP or ATP, but much higher concentrations of ATP were required for equivalent displacement of the tubulin-bound GDP. Polymerization with GTP or ATP was inhibited in a qualitatively similar manner by GDP, with increasing concentrations of GDP causing a progressive prolongation of the nucleation period and reduction in reaction rate and extent. However, complete inhibition of polymerization required that GDP:GTP much greater than 1, but that GDP:ATP much less than 1. Inhibition appeared to be primarily competitive, since with higher triphosphate concentrations higher GDP concentrations were required for comparable inhibition. We conclude that ATP effects on tubulin polymerization are mediated through a feeble interaction at the exchangeable GTP site.  相似文献   

12.
The tubulin vinca domain is the target of widely different microtubule inhibitors that interfere with the binding of vinblastine. Although all these ligands inhibit the hydrolysis of GTP, they affect nucleotide exchange to variable extents. The structures of two vinca domain antimitotic peptides--phomopsin A and soblidotin (a dolastatin 10 analogue)--bound to tubulin in a complex with a stathmin-like domain show that their sites partly overlap with that of vinblastine and extend the definition of the vinca domain. The structural data, together with the biochemical results from the ligands we studied, highlight two main contributors in nucleotide exchange: the flexibility of the tubulin subunits' arrangement at their interfaces and the residues in the carboxy-terminal part of the beta-tubulin H6-H7 loop. The structures also highlight common features of the mechanisms by which vinca domain ligands favour curved tubulin assemblies and destabilize microtubules.  相似文献   

13.
The effect of both antimitotic drugs and nucleotide analogues on the magnesium-induced self-association of purified tubulin into 42S double rings has been examined by sedimentation velocity. In the absence of magnesium, all complexes sedimented as the 5.8S species. The binding of colchicine to tubulin led to a small but consistent (-0.1 to -0.2 kcal/mol) enhancement in the self-association of tubulin alpha-beta dimers. In the absence of nucleotide at the exchangeable site, tubulin retained a weak ability (K2 = 7.5 x 10(3) M-1) to self-associate, which was unchanged by the addition of guanosine or GMP. Analogues with altered P-O-P bonds (GMPPCP, GMPPNP) did not support ring formation at the protein concentrations examined, although GMPPCP supported microtubule assembly. When the exchangeable site was occupied by nucleotides altered on the gamma-phosphate (GTP gamma S, GTP gamma F), rings were formed; tubulin-GTP gamma F formed rings to an extent slightly greater than did tubulin-GTP, and tubulin-GTP gamma S to about the same extent as tubulin-GDP. Both of these analogues are inhibitors of microtubule assembly. These results are consistent with a model [Melki, R., Carlier, M.-F., Pantaloni, D., & Timasheff, S. N. (1989) Biochemistry 28, 9143-9152] in which an equilibrium exists between straight (microtubule-forming) and curved (ring-forming) conformations of tubulin. Furthermore, the present results indicate that the "switch" which controls the nature of the final polymeric product via free energy linkages is the occupancy of the gamma-phosphate binding locus of the exchangeable site by a properly coordinated metal-nucleotide complex.  相似文献   

14.
The synthetic anti-tumor drug 3-(1-anilinoethylidene)-5-benzylpyrrolidine-2,4-dione (TN-16) is known to block microtubule assembly and colchicine binding to tubulin, although its structure does not resemble those of either colchicine, podophyllotoxin, or nocodazole (Arai, FEBS Lett. 155:273-276 (1983]. We have found that TN-16 affects the intra-chain cross-linking of beta-tubulin by N,N'-ethylene-bis(iodoacetamide) in a manner identical to that of colchicine, podophyllotoxin, and nocodazole, but different from that of vinblastine or maytansine. TN-16 also inhibits alkylation of tubulin by iodo[14C]acetamide, as do colchicine and its congeners. TN-16 appears to bind to tubulin at the colchicine binding site and one of its phenyl groups is likely to bind at the site on tubulin where colchicine's A ring binds.  相似文献   

15.
A new fluorophor for tubulin which has permitted the monitoring of microtubule assembly in vitro is reported. DAPI (4',6-diamidino-2-phenylindole), a fluorophor already known as a DNA intercalator, was shown to bind specifically to a unique tubulin site as a dimer (KD(app) = 43 +/- 5 microM at 37 degrees C) or to tubulin associated in microtubules (KD(app) = 6 +/- 2 microM at 37 degrees C) with the same maximum enhancement in fluorescence. When tubulin polymerization was induced with GTP, the change in DAPI affinity for tubulin resulted in an enhancement of DAPI binding and, consequently, of fluorescence intensity. DAPI, whose binding site is different from that of colchicine, vinblastine, or taxol, did not interfere greatly with microtubule polymerization. It induced a slight diminution of the critical concentration for tubulin assembly due to a decrease in the depolymerizing rate constant. Moreover, DAPI did not interfere with GTP hydrolysis correlated with tubulin polymerization, but it decreased the GTPase activity at the steady state of tubulin assembly. Even at substoichiometric levels DAPI can be used to follow the kinetics of microtubule assembly.  相似文献   

16.
The interaction of phomopsin A with bovine brain tubulin   总被引:1,自引:0,他引:1  
Phomopsin A is an anti-mitotic compound from the fungus Phomopsis leptostroniformis which is a potent inhibitor of microtubule assembly in vitro; like maytansine, it is known to compete with vinblastine for binding to tubulin (E. Lacey, J. A. Edgar, and C. C. J. Culvenor (1987) Biochem. Pharmacol. 36, 2133-2138). A major difference between the effects of maytansine and vinblastine is that vinblastine is a potent inhibitor of tubulin decay, whereas maytansine has little or no effect on decay. Since phomopsin A is structurally distinct from either maytansine or vinblastine, tubulin decay may be measured by either the time-dependent loss of the ability to bind to [3H]colchicine or the time-dependent increase in the binding of bis(8-anilinonaphthalene 1-sulfonate) (BisANS) to tubulin. By either method, phomopsin A was found to be a much stronger inhibitor of tubulin decay than is vinblastine or any other drug yet tested, and in fact, when decay is measured by the increase of BisANS binding, phomopsin A appears to stop the process entirely. This may prove to be useful in the determination of the higher-order structure of the tubulin molecule.  相似文献   

17.
The binding of four potent antimitotic agents, rhizoxin (RZX), phomopsin A (PMS-A), ansamitocin P-3 (ASMP-3), and vinblastine (VLB), to tubulins from RZX-sensitive and -resistant strains of Aspergillus nidulans, Schizosaccharomyces pombe, and Saccharomyces cerevisiae was investigated. Mycelial extracts to which RZX could bind contained beta-tubulin with Asn as the 100th amino acid residue (Asn-100) in all cases, and those without affinity for RZX contained beta-tubulins with either Ile-100 or Val-100. Though PMS-A shares the same binding site as RZX and ASMP-3 on porcine brain tubulin (Asn-100), only ASMP-3 bound Asn-100 fungal tubulins in a competitive manner with respect to RZX. PMS-A and VLB, which strongly bind to porcine brain tubulin, did not bind to any of the fungal mycelial extracts examined. The results indicate differential interactions of these antimitotic agents with brain and fungal tubulins.  相似文献   

18.
EPR titration of tubulin with an allocolchicine spin probe showed more than one binding site: one high-affinity binding site (Kd = 8 microM), consistent with the Ki found for competition with colchicine, and one or more low-affinity site(s) (Kd higher than 50 microM). No disturbance of the EPR signal of the tubulin-bound allocolchicine spin probe could be observed at room temperature in the presence of other paramagnetic probes: Mn(II) for the binding site of Mg(II), Co(II) for the Zn(II) binding site and Cr(III)GTP for the binding site of the exchangeable GTP. Labelling of tubulin with both the allocolchicine and a SH-group spin probe also showed lack of interaction. The colchicine-binding site is thus sterically isolated from the binding sites for GTP, Mg(II), Zn(II) and the two essential SH-groups. In the tubulin-colchicin complex, all SH-groups could still be labelled with an excess of the SH-reagent, N-ethylmaleimide. Furthermore, colchicine binding was only minimally influenced by the blocking of the two essential SH-groups. However, the rate constant of the reaction of two equivalents of the SH-reagent, a maleimide spin probe, with the tubulin-colchicine complex was only 50% of the rate constant found with uncomplexed tubulin. As direct steric interaction of the essential SH-groups with the colchicine-binding site can be excluded, we can now definitively decide that binding of colchicine to tubulin induces a conformational change, which affects the accessibility of the most reactive SH-groups.  相似文献   

19.
Bis(8-anilinonaphthalene-1-sulfonate) as a probe for tubulin decay   总被引:1,自引:0,他引:1  
The fluorescent apolar probe bis(8-anilinonaphthalene-1-sulfonate) (Bis-ANS) has been used to detect structural correlates of the well-known but poorly understood decay of tubulin function, by which tubulin loses its ability to polymerize and bind drugs in a complex, time-dependent way. The present results indicate that the decay of tubulin is accompanied by the appearance of hydrophobic areas, which bind a total of six Bis-ANS molecules with a dissociation constant of 19 microM. This binding seems to be a result of localized structural changes that are taking place in the tubulin molecule and can be used as a probe for these changes. In particular, circular dichroism measurements revealed no significant changes in the average secondary structure of the protein during the time required for complete binding of the Bis-ANS molecules. Preincubation of tubulin with the antimitotic drugs colchicine, podophyllotoxin, and vinblastine slows the rate of appearance of the hydrophobic region. Vinblastine has the maximal effect followed by colchicine and podophyllotoxin. In contrast, preincubation with maytansine has no effect. In addition, lowering the temperature decreases the rate of appearance of this region. These results correlate with the effect of drugs on the alkylation of tubulin sulfhydryl groups by iodoacetamide [Luduena, R.F., & Roach, M.C. (1981) Biochemistry 20, 4444-4450] and with the ability of inhibitors of microtubule assembly to permit the polymerization of tubulin into nonmicrotubule structures.  相似文献   

20.
The exchangeable nucleotide binding site of platelet tubulin was labeled with [14C]p-fluorosulfonyl benzoylguanosine (FSBG). FSBG promoted polymerization of tubulin but depolymerization did not occur in the presence of this nucleoside analogue. GTP was able to block FSBG binding to tubulin. [14C]Iodoacetamide-treated tubulin which was first reacted with FSBG was digested with trypsin. The resultant peptides were analyzed by reverse phase high pressure liquid chromatography. One FSBG-labeled peptide could be identified both by its radioactivity and the characteristic UV absorbance spectrum associated with it. This may represent the exchangeable nucleotide site. A second peptide with a distinct nucleotide absorbance peak was found both in FSBG-treated and untreated tubulin preparations. This evidence is suggestive of the non-exchangeable nucleotide binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号