首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
RecA- mutants of Escherichia coli extensively degrade their DNA following UV irradiation. Most of this degradation is due to the recBC DNase, which suggests that the recA gene is involved in the control of recBC DNase in vivo. We have shown that purified recA protein inhibits the endonuclease and exonuclease activities of recBC DNase on single-stranded DNA. The extent of inhibition is dependent on the relative concentration of recA protein, recBC DNase, and the DNA substrate; inhibition is greatest when the concentrations of DNA and recBC DNase are low and the concentrations of recA protein is high. At fixed concentrations of recA protein and recBC DNase, inhibition is eliminated at high concentrations of DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), an ATP analog which stabilizes the binding of recA protein to both single- and double-stranded DNA, recA protein is a more potent inhibitor of the nuclease activities on single-stranded DNA and is a weak inhibitor of the exonuclease activity on double-stranded DNA. Inhibition of the latter is enhanced by oligodeoxynucleotides, which stimulate the binding of recA protein to double-stranded DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), recA protein also inhibits the action of exonuclease I on single-stranded DNA and of lambda exonuclease on double-stranded DNA. These observations are most consistent with the idea that recA protein protects DNA from recBC DNase by binding to DNA. RecA protein also blocks the endonucleolytic cleavage of gapped circular DNA by recBC DNase. Since both recA protein and recBC DNase have the ability under certain conditions to unwind duplex DNA and to displace strands, we looked for evidence that their combined action would enlarge gaps but found no extensive enlargement. D-loops, a putative intermediate in genetic recombination, are effectively protected against the action of recBC DNase by the E. coli single strand binding protein and by recA protein in the presence of adenosine 5'-O-(3-thiotriphosphate).  相似文献   

2.
The deoxyribonuclease specified by the recB and recC genes of Escherichia coli (recBC DNase; exonuclease V) has been purified to near homogeneity by a new procedure. Although hydrolysis of even a single nucleotide from a duplex DNA molecule by the pure enzyme is absolutely dependent upon ATP, the extent of phosphodiester hydrolysis is strongly inhibited by ATP concentrations of 0.2 mm or greater, and the initial rate is unaffected. Under these conditions, the extent of DNA hydrolysis is proportional to enzyme concentration. In contrast, neither the rate nor the extent of hydrolysis of single-stranded DNA nor ATP is affected by high concentrations of ATP. The amount of large single-stranded polynucleotide generated by the action of the recBC DNase increases as the ATP concentration increases and, at 0.5 mM ATP, becomes equivalent to the amount of acid-soluble nucleotide formed. These findings suggest that high intracellular concentrations of ATP affect the mechanism of the recBC DNase so as to limit the extent of hydrolysis of duplex DNA, while at the same time favoring the formation of single-stranded regions within the duplex. Such regions may be essential intermediates in the recombination process.  相似文献   

3.
The recBC nuclease (also called exonuclease V) has been partially purified from Escherichia coli K-12 strains carrying the thermosensitive recB270, recC271, and recB270 recC271 mutations. Of the multiple activities associated with the enzyme, only the adenosine 5'-triphosphate-dependent exonucleolytic hydrolysis of duplex deoxyribonucleic acid (DNA) is abnormally thermolabile. The exo- and endonucleolytic degradation of single-stranded DNA is no more thermosensitive than that catalyzed by the wild-type enzyme. These results suggest that the defects in genetic recombination, DNA repair, and the maintenance of cell viability observed in recBC mutants in vivo result primarily from the specific loss of adenosine 5'-triphosphate-dependent exonuclease active on duplex DNA.  相似文献   

4.
The recA protein of Escherichia coli promotes pairing in vitro between covalent circular duplex DNA and homologous circular duplex DNA containing a single stranded region. We have used a filter binding assay to investigate the frequency of homologous pairing between gapped and intact duplex DNA when unwinding of the free 3' and 5' ends of the gapped molecules was blocked. In order to obtain DNA without free ends, the gapped DNA was treated with trimethylpsoralen and 360 nm light so as to introduce about 6 crosslinks per DNA molecule and the double stranded regions on either side of the gaps were then digested up to the first crosslinks with exonuclease III and lambda exonuclease. This treatment did not diminish the frequency of homologous pairing, an observation which is difficult to reconcile with models for recombination requiring strand unwinding before pairing.  相似文献   

5.
From an induced lysogen of bacteriophage Mu-1, we partially purified a substance of high molecular weight that blocks the action of several exonucleases on double-stranded DNA. The presence of the inhibitor in cell-free extracts is dependent on induction of a Mu prophage. The Mu-related inhibitor acts by binding to double-stranded DNA rather than by interacting with the DNase. The inhibitor protects linear duplex DNA of Mu, P22, and phi X174am3 from exonucleolytic degradation by recBC DNase and lambda exonuclease. Single-stranded DNA, however, is not protected by the inhibitor from degradation by either recBC DNase or exonuclease I. The inhibitor preparation contains a protein that binds to linear duplex DNA, but not to circular duplex DNA; ends are required for binding to occur. Single-stranded DNA is not a substrate for the binding protein. These and other results suggest that the binding protein and the inhibitor are the same activity.  相似文献   

6.
The RecBC enzyme of Escherichia coli promotes genetic recombination of phage or bacterial chromosomes. The purified enzyme travels through duplex DNA, unwinding and rewinding the DNA with the transient production of potentially recombinogenic single-stranded DNA. The studies reported here are aimed at understanding which chromosomal forms allow the entry of RecBC enzyme and hence may undergo RecBC enzyme-mediated recombination. Circular duplex molecules, whether covalently closed, nicked or containing single-stranded gaps of 10 to 774 nucleotides, are not detectably unwound by RecBC enzyme. Linear duplex molecules are readily unwound if they have a nearly flush-ended terminus whose 5' and 3' ends are offset by no more than about 25 nucleotides; molecules with longer single-stranded tails are poorly bound by RecBC enzyme and are infrequently unwound. The single-strand endonuclease activity of RecBC enzyme can slowly cleave gapped circles to produce molecules presumably capable of being unwound. These results provide an enzymatic basis for the recombinogenicity of double-stranded DNA ends established from genetic studies of RecBC enzyme and Chi sites, recognition sites for RecBC enzyme-mediated DNA strand cleavage.  相似文献   

7.
The Rad3 ATPase/DNA helicase was purified to physical homogeneity from extracts of yeast cells containing overexpressed Rad3 protein. The DNA helicase can unwind duplex regions as short as 11 base pairs in a partially duplex circular DNA substrate and does so by a strictly processive mechanism. On partially duplex linear substrates, the enzyme has a strict 5'----3' polarity with respect to the single strand to which it binds. Nicked circular DNA is not utilized as a substrate, and the enzyme requires single-stranded gaps between 5 and 21 nucleotides long to unwind oligonucleotide fragments from partially duplex linear molecules. The enzyme also requires duplex regions at least 11 base pairs long when these are present at the ends of linear molecules. Rad3 DNA helicase activity is inhibited by the presence of ultraviolet-induced photoproducts in duplex regions of partially duplex circular molecules.  相似文献   

8.
This report describes the results of our initial enzymological characterization of a homogeneous preparation of DNA polymerase alpha that we have purified from cultured human KB cells. Although the enzyme is most reactive with duplex DNA substrates that contain short gaps (optimally activated) in incubations that require Mg2+, the polymerase possesses the intrinsic capacity to copy the initiated ribohomopolymer template, (A)-n, (dT)-200, at low rates in the presence of Mn2+. Because of the preponderance of DNA polymerase alpha in actively multiplying vertebrate cells, it is probable that this low level of activity comprises the majority of the ribopolymer copying activity that can be detected in crude tissue extracts. The presence of contaminating or associated deoxyribonuclease activities can be excluded from the purified enzyme to levels of 10(-4) to 10(-7) of the polymerase activity. The mechanism of polymerization on activated DNA under optimum conditions is moderately processive, with 11 +/- 5 nucleotides incorporated per polymerization cycle. The polymerase is unable to work at nicks or at short gaps of approximately 20 to 30 nucleotides in length, and it measures a surprisingly invariant effective template length on optimally activated DNA and on DNA molecules that have been gapped to varying extents with Escherichia coli exonuclease III. In the "Appendix" we present an amplification of the theoretical formulation of Bambara et al. (Bambara, R. A., Uyemura, D., and Choi, T. (1978) J. Biol. Chem. 253, 413--423) that permits the use of DNA polymerases with significant associated 3' leads to 5'-exonuclease activities for the accurate measurement of average template lengths (gap sizes) and titration of usable 3'-hydroxyl primer termini in gapped, duplex DNA substrates.  相似文献   

9.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

10.
The repair of X-ray-induced strand breaks was studied in permeabilized Escherichia coli recBC cells deficient for the adenosine 5'-triphosphate (ATP)-dependent exonuclease V and in recBC sbcA cells that possess the ATP-independent exonuclease VIII. It is shown that repair induced by additon of ATP does not take place in recBC and recBC sbcB cells and is limited in recBC sbcA cells. ATP-dependent repair is nevertheless observable if together with ATP a mixture of deoxynucleotide monophosphates is supplied to the cells. These data fit with the assumption that in wild-type cells ATP-dependent repair involves exonuclease V-induced deoxyribonucleic acid degradation and rephosphorylation of the degradation products which are reused for deoxyribonucleic acid polymerase I-dependent break closure. Repair in the presence of deoxynucleotide triphosphates rejoins a similar fraction of breaks in all strains tested irrespective of the amount of postirradiation degradation resulting from exonuclease V and exonuclease VIII activities. Thus, exonuclease V is dispensable for deoxynucleotide triphosphate-dependent repair, i.e., does not "clean" the ends of breaks produced by X-irradiation. ATP- and deoxynucleotide triphosphate-dependent repair are not additive and seem to repair the same population of deoxyribonucleic acid molecules damaged by X-irradiation.  相似文献   

11.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

12.
RecA protein catalyzes homologous pairing of partially single-stranded duplex DNA and fully duplex DNA to form stable joint molecules. We constructed circular duplex DNA with various defined gap lengths and studied the pairing reaction between the gapped substrate with fully double-stranded DNA. The reaction required a stoichiometric amount of RecA protein, and the optimal reaction was achieved at a ratio of 1 RecA monomer per 4 base pairs. The length of the gap, ranging from 141 to 1158 nucleotides, had little effect on the efficiency of homologous pairing. By using a circular gapped duplex DNA prepared from the chimeric phage M13Gori1, we were able to show the formation of nonintertwined or paranemic joints in duplex regions between the gapped and fully duplex molecules. The formation of such paranemic joints occurred efficiently and included nearly all of the DNA in the reaction mixture. The reaction required negative superhelicity, and pairing was greatly reduced with linear or nicked circular DNA. We conclude that one functional role of the single-stranded gap is for facilitating the binding of RecA protein to the duplex region of the gapped DNA. Once the nucleoprotein filament is formed, homologous pairing between the gapped and fully duplex DNA can take place anywhere along the length of the nucleoprotein complex.  相似文献   

13.
T C Terwilliger 《Gene》1988,69(2):317-324
A simple and highly efficient procedure for oligodeoxynucleotide (oligo)-directed mutagenesis has been developed. In this procedure, a gapped heteroduplex DNA is first constructed and purified. The gapped heteroduplex consists of a circular 'template' strand of DNA, which contains some misincorporated deoxyuridine nucleotides, and a complementary strand which does not contain deoxyuridine, and which lacks a defined segment. Making a specific change in the sequence of the DNA within the gapped region then only requires ligation and transformation. An oligo, exactly the same length as the gap, and with the desired sequence, is synthesized, purified, and ligated directly into the gap in the heteroduplex. When this DNA is used to transform wt (ung+) Escherichia coli, about 80% of the resulting plasmids contain the sequence determined by the synthetic oligo. One gapped heteroduplex preparation can be used for many mutagenesis experiments, so that this procedure is well-suited for producing a series of defined mutations within a defined target region flanked by sites for restriction enzyme cleavage. As the method does not require a polymerase, the effects of primer displacement and polymerase infidelity are avoided.  相似文献   

14.
The protein encoded by the gam gene of bacteriophage lambda ("gamma protein") is a specific inhibitor of the recBC enzyme of Escherichia coli. The lambda protein has been purified approximately 2,000-fold, and its structure and inhibitory activity have been characterized. It appears to be composed of two identical subunits of 16,500 daltons, inhibits all of the catalytic activities of the recBC enzyme with apparently equal efficiency, but has no effect upon any other E. coli or lambda-DNase tested. Inhibition does not occur unless recBC enzyme is exposed to gamma protein prior to reaction of the enzyme with DNA. The inhibitory activity is independent of temperature, and no catalytic activity has been detected that might fulfill the inhibitory function. It appears instead that the inhibition involves a stoichiometric, rather than a catalytic interaction between gamma protein and the enzyme. Reaction kinetics for the recBC enzyme inhibited by gamma protein show no anomalous protein--only a depressed rate. Inhibition is not competitive and does not appear to affect the enzyme's affinity for DNA. The enzyme remains inhibited after it is separated from "excess" gamma protein by gel filtration or sedimentation in a glycerol gradient, and inhibited enzyme has a reduced electrophoretic mobility compared to that of uninhibited enzyme. Gamma Protein inhibits recBC enzyme which has been reconstituted from cell-free extracts by complementation in vitro, but at least one of the complementing factors present in extracts from recB- cells does not by itself form a complex with gamma protein. The mechanism of inhibition and the implications of these results from gamma replication and recombination are discussed.  相似文献   

15.
The in vivo activity of the recBC nuclease was assayed by transfection of isogenic rec+ and rec minus spheroplasts with bacteriophage DNA of various origin and structure. The results indicate that the recBC nuclease can limit transfection at several stages during the production of an infective center; such limitations depend primarily on whether the DNA is in, or assumes, a nuclease-sensitive structure. The first stage of limitation can occur when a nuclease-sensitive transfecting molecule enters the spheroplast. Other potential limitation points occur during replication and maturation of the bacteriophage DNA. The initial stage can be bypassed by using recBC nuclease-resistant molecules such as circular forms. Through analysis of results with other DNA structures, we found that in vivo the effects of the double-strand exonucleolytic activity of the recBC nuclease predominated. The effects of the single-strand nuclease activities seem to be modified from those observed for the purified enzyme in vitro (Karu et al., 1974). Inside the cell, the single-strand exonuclease activity is very weak and the single-strand endonuclease activity is abolished almost completely.  相似文献   

16.
The T5 D15 exonuclease purified from an overproducing strain of E. coli was shown to possess a low level of endonucleolytic activity specific for single-stranded DNA when assayed with 1-10 mM Mg2+ as co-factor. Endonuclease activity on double-stranded circular DNA could not be detected under these conditions. Nicked circular DNA was first gapped by the enzyme's exonucleolytic activity, creating a single-stranded region. This gapped substrate was then endonucleolytically cleaved and rapidly degraded. We show that a gapped and not a nicked substrate is required for this activity as previously suggested (Moyer, R. W. and Roth, C. T. 1977, J. Virol. 24, 177-193). The single-strand endonuclease activity could be selectively suppressed by using low concentrations of Mg2+ as co-factor (less than 1 mM), thus allowing nicked double-stranded circular DNA to be gapped to a single-stranded circular species. We also report on sequence similarities between the T5 exonuclease and several prokaryotic DNA polymerases.  相似文献   

17.
The lambda exonuclease, an enzyme that has been implicated in genetic recombination, rapidly and processively degrades native DNA, starting at the 5' terminus. The enzyme will also degrade the 5'-terminated strand at a single-stranded branch. The experiments reported here reveal various interactions of the enzyme with single-stranded DNA. The rate of digestion is related inversely to the length of single strands. Chains of 100 nucleotides are digested at about 10% the rate of digestion of native DNA. Digestion of the single-stranded ends of lambda DNA does not appear to occur processively. The enzyme binds to circular as well as linear single strands and the affinity for single strands is also related inversely to the chain length. In an equimolar mixture of single- and double-stranded DNA the action of lambda exonuclease on the latteris about half-inhibited. At 20 degrees the initiation of digestion at the 5' terminus of duplex DNA is blocked sterically when such DNA has 3'-terminal single strands that are longer than 100 nucleotides. Information about these properties is important for the practical use of lambda exonuclease as well as for reflections on the role of the enzyme in genetic recombination.  相似文献   

18.
Summary Some aspects of the involvment of the terminal reduntant regions of T7 DNA on phage production have been studied by transfection experiments with T7 DNA after treatment of the molecules with exonuclease or exonuclease plus exonuclease I. It was found that terminal 5 gaps between 0.08 and 6.4% of the total length did not decrease the infectivity of the molecules although such gaps cannot be filled directly by DNA polymerases. Rather, compared to fully native DNA the infectivity of gapped DNA increased up to 20 fold in rec + spheroplasts and up to 4 fold in recB spheroplasts. This indicates a protective function of the single-stranded termini against the recBC enzyme in rec + and possibly another unidentified exonuclease present also in recB. The possibility that spontaneous circularization of the gapped molecules in vivo provides protection against exonucleolytic degradation was tested by transfection with T7 DNA circularization in vitro by thermal annealing. Such molecules were separated from linear molecules by neutral sucrose gradient centrifugation. They displayed a 3 to 6 fold higher infectivity in rec + and recB compared to linear gapped molecules, which shows that T7 phage production may effectively start from circular DNA.When the 3 single-stranded ends from gapped molecules were degraded by treatment with exonuclease I the infectivity of the molecules was largely abolished in rec + and recB as soon as 40 to 80 base pairs had been removed per end. It is concluded that the terminal regions of T7 DNA molecules are essential for phage production and that the redundancy comprises probably considerably less than 260 base pairs. The results are discussed with respect to the mode of T7 DNA replication.  相似文献   

19.
Exonucleolytic degradation of [3]H-labeled DNA was examined in partially purified fractions of lysates obtained from nonirradiated RecBCD enzyme-containing cells of Escherichia coli and in the radiation-resistant mutant Gamr444. The degradative activity was shown to be lowered in these cells to the same extent as in the recBC mutant. The efficiency of plating of the mutant phage T4 2-, DNA of which can be degraded by exonuclease V, was 400-fold higher on the strain Gamr444 than on the wild-type strain AB1157. This value was shown to be only twice as low as that on the recB mutant or on the strain AB1157 carrying plasmid pGam26 with a radiation-resistance allele gam26 cloned from mutant Gamr444. The data obtained confirmed the hypothesis that the Gamr444 mutant contains a constitutive inhibitor of exonucleolytic activity of the RecBCD enzyme in nonirradiated cells. This inhibitor was shown to be encoded by the gam26 allele that had previously been mapped at 56.8 min of the E. coli chromosome. A possible mechanism of the involvement of this inhibitor in enhanced radiation resistance of the mutant Gamr444 is considered.  相似文献   

20.
The extracellular nucleases from Alteromonas espejiana BAL 31 can catalyze the endonucleolytic and/or exonucleolytic hydrolysis of duplex DNA in response to a variety of alterations, either covalent or noncovalent, in DNA structure. The nuclease can exist as at least two kinetically and molecularly distinct protein species. The two species that have been studied, called the 'fast' (F) and 'slow' (S) nucleases, both readily convert negatively supercoiled DNAs to linear duplex molecules and accomplish this conversion through the formation of a circular duplex intermediate containing usually a single interruption in one strand. It is further shown that most of these intermediates contain gaps arising from the removal in a processive manner of one or more nucleotide residues after the introduction of the initial strand break (nick). Considering only the intermediates with gaps, the average number of missing residues is 6.3 +/- 0.5 and 2.8 +/- 0.3, respectively, for DNA acted upon by the F and S enzymes independently of the extent of conversion of supercoiled DNA. The nicks and gaps are bounded by 3'-hydroxyl and 5'-phosphoryl termini. When singly nicked circular DNA is used as the substrate, conversion to the linear duplex form occurs predominantly through a gapped circular intermediate with the same average numbers, within experimental error, of missing nucleotides for the respective nuclease species as found when supercoiled DNA is the substrate. The conversion to linear duplex DNA is much slower when nicked circular DNA is the substrate compared to that found when supercoiled DNA is the starting material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号