首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
N Cu?ado  J Barrios  J L Santos 《Génome》2000,43(6):945-948
A method of preparing two-dimensional surface spreads of plant synaptonemal complexes (SCs) associated with fluorescence in situ hybridization (FISH) has been applied to analyze the location and organization of five different highly repeated DNA sequences in rye. Our observations indicate that, depending on the type of sequence, the chromatin displays different types of organization. Telomeric sequences were seen tightly associated with the SC while other repetitive DNA sequences were found to form loops that are associated with SCs only at their bases. On the contrary, the FISH signal of a centromeric satellite had a granular appearance, reflecting that the hybridization occurs only with parts of the chromatin loops.  相似文献   

3.
4.
After applying proper deoxyribonucleic acid (DNA) probes, fluorescence in situ hybridization (FISH) showed that the 8/9 centromeres—one per chromatid of the male haploid complement (X0) of Pyrgomorpha conica grasshopper—colocalized at the spermatid blunt end, where the spermatozoa flagellum inserts. A bundle of aligned 4′,6-diamidino-2-phenylindole-positive chromatid scaffolds, which formed the central spermatid core, was observed after DNA breakage detection followed by FISH. Modular nature of scaffold DNA was occasionally evident. The technique also showed that in the early spermatid, the chromatid scaffolds lacked any DNA nick, whereas abundant breaks accumulated in the surrounding loops. Moreover, immunodetection showed that scaffold DNA participated in the formation of triplex DNA, while this configuration was absent from the loops. During spermatid maturation, triplex DNA disappeared from the scaffold in parallel with loop retraction, while protamines replace histones. Thus, the presence of triplex DNA in the chromatid scaffold correlates with the anchoring of expanded DNA loops to it. After loop retraction, the scaffolds of all chromatids coiled as a single unit in the spermatid head. This cooperative coiling produced enlargement and tilting of the distal telomeric signals, which were distributed along the spermatid head according to the length of each chromosome. We propose that specific DNA sequences dispersed throughout the whole chromatid fold forward and backward coaxially to chromatid length, forming individual scaffold modules whose linear assembly accounts for the minimum length of each individual chromatid. Finally, the core of the grasshopper male spermatid should be considered as a single chromosome in which the DNA scaffolds of the whole set of the nonhomologous chromosomes of the haploid complement are interconnected. This pattern of chromatin organization applies probably to other elongated spermatids.  相似文献   

5.
Reversible permeable cells have been used to isolate chromatin structures during the process of chromosome condensation. Analysis of individual structures slipping out from nuclei after reversal of permeabilization revealed that chromosomes of Drosophila cells consist of small units called rodlets. The fluorescent images of chromatin fibers were subjected to computer analysis allowing the computer-aided visualization of chromatin fibers. The zig-zag array of fibers consisting of 12-15 nucleosomes with a length of 270-330 nm (average 300 nm) showed decondensed extended strings, condensed loops, and coiled condensed loops. Theoretical considerations leading to the plectonemic model of chromatin condensation are based on experimental data, and give an explanation how the 30 chromatin fibers are formed and further condensed to the 300 nm chromatin loops in Drosophila cells.  相似文献   

6.
In accordance with molecular biology data reported elsewhere, homologous interphase X-chromosome territories differ greatly in the abundance of inactive condensed chromatin. On the other hand, a three dimensional FISH (3D FISH) method has revealed that domains of both inactive and active X-chromosome have similar volumes and similar maximum section areas (Smax). To solve this contradiction, we examined differences between homologous human interphase X-chromosome territories using two dimensional FISH (2D FISH) preparations of clustered PHA-stimulated lymphocytes. For obtaining such preparations, we developed a new technique to avoid a stage of hypotonic treatment of living cells, since this treatment levels the chromatin compactness degree. According to our 2D FISH data, the mean ratios of Smax for larger and smaller homologous X-chromosomes, calculated for individual flattened nuclei, were 1.83 +/- 0.08 and 2.02 +/- 0.09, respectively, for clumped cells and groups of loosely associated and separated lymphocytes. In comparison, the same ratio calculated for individual 3D nuclei of PHA-stimulated lymphocytes was 1.38 +/- 0.05 (Falk et al., 2002). Our findings give evidence for enrichment of inactive X-chromosomes by low stretchable condensed chromatin. In addition, these findings show that an active X is enriched by a high stretchable form of chromatin, whose content may distinctly vary from cell to cell.  相似文献   

7.
Insulators might regulate gene expression by establishing and maintaining the organization of the chromatin fiber within the nucleus. Biochemical fractionation and in situ high salt extraction of lysed cells show that two known protein components of the gypsy insulator are present in the nuclear matrix. Using FISH with DNA probes located between two endogenous Su(Hw) binding sites, we show that the intervening DNA is arranged in a loop, with the two insulators located at the base. Mutations in insulator proteins, subjecting the cells to a brief heat shock, or destruction of the nuclear matrix lead to disruption of the loop. Insertion of an additional gypsy insulator in the center of the loop results in the formation of paired loops through the attachment of the inserted sequences to the nuclear matrix. These results suggest that the gypsy insulator might establish higher-order domains of chromatin structure and regulate nuclear organization by tethering the DNA to the nuclear matrix and creating chromatin loops.  相似文献   

8.
Neusser M  Schubel V  Koch A  Cremer T  Müller S 《Chromosoma》2007,116(3):307-320
Several studies demonstrated a gene-density-correlated radial organization of chromosome territories (CTs) in spherically shaped nuclei of human lymphocytes or lymphoblastoid cells, while CT arrangements in flat-ellipsoidal nuclei of human fibroblasts are affected by both gene density and chromosome size. In the present study, we performed fluorescence in situ hybridization (FISH) experiments to three-dimensionally preserved nuclei (3D-FISH) from human and nonhuman primate cultured lymphoblastoid cells and fibroblasts. We investigated apes, Old, and New World monkeys showing either evolutionarily conserved karyotypes, multiple translocations, fusions, or serial fissions. Our goal was to test whether cell type specific differences of higher order chromatin arrangements are evolutionarily conserved in different primate lineages. Whole genome painting experiments and further detailed analyses of individual chromosomes indicate a gene-density-correlated higher order organization of chromatin in lymphoblastoid cell nuclei of all studied primate species, despite evolutionary chromosome reshuffling. In contrast, in primate fibroblast nuclei evolutionary translocations, fissions and fusions resulted in positional shifts of orthologous chromosome segments, thus arguing against a functional role of chromosome size-dependent spatial chromatin arrangements and for geometrical constraints in flat-ellipsoidal fibroblast nuclei. Notably, in both cell types, regions of rearranged chromosomes with distinct differences in gene density showed polarized arrangements with the more gene-dense segment oriented towards the nuclear interior. Our results indicate that nonrandom breakage and rejoining of preferentially gene-dense chromosomes or chromosome segments may have occurred during evolution. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
We have evaluated the effects of different DNA denaturation protocols commonly used in DNA fluorescent in situ hybridization (FISH) experiments on chromatin structure using indirect immunofluorescence. The use of antibodies to acetylated histones H3 and H4 demonstrates that the different procedures differ considerably in their extent of histone displacement. Procedures involving paraformaldehyde fixation were found to be compatible with the structural preservation of acetylated chromatin organization by indirect immunofluorescence. These results provide a basis for interpreting DNA FISH experiments aimed at determining chromatin organization of individual loci. Received: 19 November 1996; in revised form: 10 January 1997 / Accepted: 10 January 1997  相似文献   

11.
12.
Recent experiments have demonstrated a nucleus where chromatin is molded into stable, interwoven loops. Yet, many of the proteins, which shape chromatin structure, bind only transiently. In those brief encounters, these dynamic proteins temporarily crosslink chromatin loops. While, on the average, individual crosslinks do not persist, in the aggregate, they are sufficient to create and maintain stable chromatin domains. Owing to the asymmetry in size and speed of molecules involved, this type of organization imparts unique biophysical properties—the slow (chromatin) component can exhibit gel-like behaviors, whereas the fast (protein) component allows domains to respond with liquid-like characteristics.  相似文献   

13.
Current models for RNA synthesis involve an RNA polymerase that tracks along a static template. However, research on chromatin loops suggests that the template slides past a stationary polymerase; individual polymerases tie the chromatin fibre into loops and clusters of polymerases determine the basic structure of the interphase and metaphase chromosome. RNA polymerase is then both a player and a manager of the chromosome loop.  相似文献   

14.
15.
16.
The structural organisation of chromatin in eukaryotes plays an important role in a number of biological processes. Our results provide a comprehensive insight into the nuclear topography of human peripheral blood granulocytes, mainly neutrophils. The nuclei of granulocytes are characterised by a segmented shape consisting of two to five lobes that are in many cases connected by a thin DNA-containing filament. The segregation of chromosomes into the nuclear lobes was studied using fluorescence in situ hybridisation (FISH). We were able to distinguish different topographic types of granulocytes on the basis of the pattern of segregation. Five topographic types were detected using dual-colour FISH in two-lobed nuclei. The segregation of four sets of genetic structures could be studied with the aid of repeated FISH and a large number of topographic types were observed. In all these experiments a non-random distribution of chromosomes into nuclear lobes was found. The painting of a single type of chromosome in two-lobed nuclei showed the prevalence of symmetric topographic types (on average in 65.5% of cases) with significant variations among individual chromosomes. The results of analysis of five topographic types (defined by two chromosomes in two-lobed nuclei) showed that the symmetric topographic types for both chromosomes are significantly more frequent than predicted. Repeated hybridisation experiments confirmed that the occurrence of certain patterns of chromosome segregation is much higher than that predicted from the combination of probabilities. The frequency of symmetric topographic types for chromosome domains was systematically higher than for genes located on these chromosomes. It appears that the prevalence of symmetric segregation patterns is more probable for large objects such as chromosome domains than for genes located on chromatin loops extending outwards from the surface of the domain defined by specific chromosome paints. This means that one chromosome domain may occur in different lobes of granulocytic nuclei. This observation is supported by the fact that both genes and centromeres were observed on filaments joining different lobes. For all chromosomes, the distances between the membrane and fluorescence gravity centre of the chromosome were measured and correlated with the segregation patterns. A higher percentage of symmetric topographic types was found in those chromosomes that were located closer to the nuclear membrane. Nuclear positioning of all genetic elements in granulocytic nuclei was studied in two-dimensional projection; however, the results were verified using three-dimensional analysis.  相似文献   

17.
It has been demonstrated by the method of competitive displacement of own chromatin histone by excess total histone that chromatin dispersity influence the strength of histone-DNA interactions in a medium of physiological ionic strength. Histone NI was removed from chromatin after the quantity of total histone added to chromatin was equivalent to that existing in chromatin. The proportion of histones H2A and H2B removed from chromatin was increased after mechanical of ultrasonic degradation of chromatin at 5-20-fold excess of total extra-histone. In some histone preparations, the removal of histones H2A and H2B was not detectable at even 200-fold excess of total histone. This may be explained by strengthening histone-DNA interactions in superhelical loops of chromatin.  相似文献   

18.
The structural heterogeneity of calf thymus chromatin preparations was studied at the level of DNA topology by analysing the influence of ethidium bromide on the chromatin viscosity in deproteinizing medium. In 0.7 M NaCl the chromatin was separated into the fractions with linear DNA (3--36% in various preparations) and with supercoiled circular DNA (scc DNA), which differ from each other in their adhesive properties. Reduction of disulfide bonds in residual chromatin protein with 5% mercaptoethanol linearized scc DNA, present in chromatin preparations as nuclear matrix subunits containing some loops of scc DNA on the protein globule.  相似文献   

19.
20.
Jiming Jiang  Bikram S Gill 《Génome》2006,49(9):1057-1068
Fluorescence in situ hybridization (FISH), which allows direct mapping of DNA sequences on chromosomes, has become the most important technique in plant molecular cytogenetics research. Repetitive DNA sequence can generate unique FISH patterns on individual chromosomes for karyotyping and phylogenetic analysis. FISH on meiotic pachytene chromosomes coupled with digital imaging systems has become an efficient method to develop physical maps in plant species. FISH on extended DNA fibers provides a high-resolution mapping approach to analyze large DNA molecules and to characterize large genomic loci. FISH-based physical mapping provides a valuable complementary approach in genome sequencing and map-based cloning research. We expect that FISH will continue to play an important role in relating DNA sequence information to chromosome biology. FISH coupled with immunoassays will be increasingly used to study features of chromatin at the cytological level that control expression and regulation of genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号