首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of complete mitochondrial genome sequences is becoming increasingly common in genetic studies. The availability of full genome datasets enables an analysis of the information content distributed throughout the mitochondrial genome in order to optimize the research design of future evolutionary studies. The goal of our study was to identify informative regions of the human mitochondrial genome using two criteria: (1) accurate reconstruction of a phylogeny and (2) consistent estimates of time to most recent common ancestor (TMRCA). We created two series of datasets by deleting individual genes of varied length and by deleting 10 equal-size fragments throughout the coding region. Phylogenies were statistically compared to the full-coding-region tree, while coalescent methods were used to estimate the TMRCA and associated credible intervals. Individual fragments important for maintaining a phylogeny similar to the full-coding-region tree encompassed bp 577-2122 and 11,399-16,023, including all or part of 12S rRNA, 16S rRNA, ND4, ND5, ND6, and cytb. The control region only tree was the most poorly resolved with the majority of the tree manifest as an unresolved polytomy. Coalescent estimates of TMRCA were less sensitive to removal of any particular fragment(s) than reconstruction of a consistent phylogeny. Overall, we discovered that half the genome, i.e., bp 3669-11,398, could be removed with no significant change in the phylogeny (p(AU)=0.077) while still maintaining overlap of TMRCA 95% credible intervals. Thus, sequencing a contiguous fragment from bp 11,399 through the control region to bp 3668 would create a dataset that optimizes the information necessary for phylogenetic and coalescent analyses and also takes advantage of the wealth of data already available on the control region.  相似文献   

2.
The steady state levels of mitochondrial rRNAs, 5 tRNAs, the 9 S RNA, and the RNA products from the genes coding for subunits 6 and 9 of the ATP synthase, cytochrome b, and subunit 1 of cytochrome oxidase have been determined after growth of yeast under conditions of respiratory repression or derepression. The analysis indicates that the mitochondrial rRNAs are present in 2000 or 9000 copies/cell in repressed or derepressed yeast, respectively. The levels of the other RNAs also differed to a similar extent, with the exception of the level of the tRNAfMet which differs by only 1.7-fold. The levels of the individual protein coding RNAs varied from 480 copies/cell for the Oli-1 RNA to 100 copies/cell for the Oli-2 RNA under derepressive conditions and from 130 copies/cell to 33 copies/cell for the same RNAs in glucose repressive conditions. The levels of the tRNAs varied even more markedly, ranging from 4200 copies/cell for the tRNAPhe to 240 copies/cell for the tRNACys after growth in derepressive conditions and from 800 copies/cell for the tRNAfMet to 30 copies/cell for the tRNACys of glucose repressed yeast. These results indicate that glucose repression uniformly decreases the levels of the individual mitochondrial RNAs studied. This decrease is related to a lower synthesis of mitochondrial RNA in the glucose repressed cells as compared to derepressed cells.  相似文献   

3.
4.
1. Three methods are described for the genetic analysis of yeast cytoplasmic mutants (mit- mutants) lacking cytochrome oxidase or coenzyme QH2-cytochrome c reductase. The procedures permit mutations in mitochondrial DNA to be mapped relative to each other and with respect to drug-resistant markers. The first method is based upon the finding that crosses of mit- mutants with some but not other isonuclear q- mutants lead to the restoration of respiratory functions. Thus a segment of mitochondrial DNA corresponding to a given mit- mutation or to a set of mutations can be delineated. The second method is based on the appearance of wild-type progeny in mit- X mit- crosses. The third one is based on the analysis of various recombinant classes issued from crosses between mit-, drug-sensitive and mit+, drug-resistant mutants. Representative genetic markers of the RIBI, OLII, OLI2 and PAR1 loci were used for this purpose. 2. The three methods when applied to the study of 48 mit- mutants gave coherent results. At least three distinct regions on mitochondrial DNA in which mutations cause loss of functional cytochrome oxidase have been established. A fourth region represented by closely clustered mutants lacking coenzyme QH2-cytochrome c reductase and spectrally detectable cytochrome b has also been studied. 3. The three genetic regions of cytochrome oxidase and the cytochrome b region were localized by the third method on the circular map, in spans of mitochondrial DNA defined by the drug-resistant markers. The results obtained by this method were confirmed by analysis of the crosses between selected mit- mutants and a large number of q- clones whose retained segments of mitochondrial DNA contained various combinations of drug-resistant markers. 4. All the genetic data indicate that the various regions studied are dispersed on the mitochondrial genome and in some instances regions or clusters of closely linked mutations involved in the same respiratory function (cytochrome oxidase) are separated by other regions which code for entirely different functions such as ribosomal RNA.  相似文献   

5.
Advances in DNA-based genetic markers provide the essential tools in measurement of genetic diversity relating to the evolution, biogeography, and systematics of red algae by exploiting genetic variation in the entire genome of organisms. The understanding of genetic diversity in Gracilaria changii (Gracilariaceae, Rhodophyta) will provide valuable information for conservation, plant breeding management, and strain selection for cultivation. However, information of intraspecific genetic variation is still rudimentary. In this study, two mitochondrial encoded markers, cytochrome oxidase subunit 1 (cox1) and intergenic spacer between the cytochrome oxidase subunits 2 and 3 (cox2-3 spacer) were used to investigate genetic diversity in 40 individuals of G. changii collected from 11 different geographically distinct populations from Peninsular Malaysia. Seven distinct mitochondrial haplotypes were identified with the cox1 gene and three mitochondrial haplotypes with the cox2-3 spacer. Intraspecific nucleotide differences ranged from 0 to 6 bp for the cox1 and 0–4 bp for the cox2-3 spacer, respectively. This is the first report comparing the suitability of mitochondrial markers of the cox1 gene and the cox2-3 spacer for genetic diversity studies on G. changii. The present study showed that the cox1 gene is a potential molecular marker to infer intraspecific genetic variation in red macroalgae. The cox1 marker is more variable compared to the cox2-3 spacer and revealed genetic variation and phylogeographic structure for this ecologically and economically important species.  相似文献   

6.
The region of mitochondrial DNA (mtDNA) containing the oxi 2 locus has been sequenced in a rho- clone (DS40) derived from the respiratory competent strain D273-10B/A48 of Saccharomyces cerevisiae. The DS40 clone was established to have retained only genetic markers in the oxi 2 locus and to have a segment of mtDNA extending from 18.6 to 24.3 units of the wild type map. The mitochondrial genome of DS40 includes a sequence that has been tentatively identified as the structural gene of Subunit 3 of cytochrome oxidase. The coding sequence is 810 nucleotides long and generates a protein with a molecular weight of 30,340. The amino acid composition of the oxi 2 gene product deduced from the nucleotide sequence is in agreement with the composition of the purified Subunit 3 of yeast cytochrome oxidase. The orientation of the DS40 mtDNA segment relative to wild type mtDNA indicates that the oxi 2 gene is transcribed from the same DNA strand as the oxi 1 and several other mitochondrial genes.  相似文献   

7.
The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.  相似文献   

8.
Ellis TP  Lukins HB  Nagley P  Corner BE 《Genetics》1999,151(4):1353-1363
Mutations in the nuclear AEP2 gene of Saccharomyces generate greatly reduced levels of the mature form of mitochondrial oli1 mRNA, encoding subunit 9 of mitochondrial ATP synthase. A series of mutants was isolated in which the temperature-sensitive phenotype resulting from the aep2-ts1 mutation was suppressed. Three strains were classified as containing a mitochondrial suppressor: these lost the ability to suppress aep2-ts1 when their mitochondrial genome was replaced with wild-type mitochondrial DNA (mtDNA). Many other isolates were classified as containing dominant nuclear suppressors. The three mitochondrion-encoded suppressors were localized to the oli1 region of mtDNA using rho- genetic mapping techniques coupled with PCR analysis; DNA sequencing revealed, in each case, a T-to-C nucleotide transition in mtDNA 16 nucleotides upstream of the oli1 reading frame. It is inferred that the suppressing mutation in the 5' untranslated region of oli1 mRNA restores subunit 9 biosynthesis by accommodating the modified structure of Aep2p generated by the aep2-ts1 mutation (shown here to cause the substitution of proline for leucine at residue 413 of Aep2p). This mode of mitochondrial suppression is contrasted with that mediated by heteroplasmic rearranged rho- mtDNA genomes bypassing the participation of a nuclear gene product in expression of a particular mitochondrial gene. In the present study, direct RNA-protein interactions are likely to form the basis of suppression.  相似文献   

9.
Heteroplasmy of the normal-sized and the deleted mitochondrial genome has been observed in mitochondrial myopathy. The deleted region of the genome in the skeletal muscle of a patient was analyzed both by the conventional Southern blot method and by the novel method of employing the combination of polymerase chain reaction and S1 nuclease digestion. The results obtained by these methods were compared. Southern hybridization using various mitochondrial DNA fragments localized the deletion from at least position 9020 to 14,955, but regions of uncertainty of 1 kb remained on both ends of the deletion. Using the polymerase chain reaction, a fragment from the deleted genome was specifically amplified by choosing a pair of primers surrounding the deletion, and two fragments adjacent to the starting and end of the deletion were amplified from the normal-sized genome. S1 nuclease analysis of the heteroduplexes formed among these fragments demonstrated that the deletion extended from positions 8650 +/- 50 to 15,660 +/- 60. This method does not require radioisotopes and, moreover, can determine the deleted region within 5 h, in contrast to the 2 days required by the conventional Southern blot analysis. These results indicate that the novel method is faster and more accurate than the conventional method for the determination of the deleted region of genome.  相似文献   

10.
A population genetic study of the polymorphism in the first hypervariable segment (HVSI) of mitochondrial DNA control region was carried out for three ethnic populations of the Volga-Ural region, Bashkirs, Russians, and Komi-Permyaks. This analysis showed that most of the mtDNA HVSI haplotypes detected in the populations of Bashkirs, Russians and Komi-Permyaks contained the combinations of nucleotide substitutions detected earlier in Asian, European, and Finno-Ugric populations. These findings are consistent with historical, anthropological, and ethnographical data suggesting the presence of European and Mongoloid components of different geographical descent in the gene pool of the contemporary population of the Volga-Ural region. The data on the genetic structure and the phylogenetic relationships between populations of the Volga-Ural region based on modern molecular genetic methods of mitochondrial genome investigation would be a substantial addition to the already existing information for some other regions of Europe and Asia. These data would provide more complete examination of the development of interethnic diversity of mitochondrial gene pools of contemporary ethnic populations with the purpose of reconstructing the genetic demographic processes that accompanied peopling of the Middle Ural and Volga region.  相似文献   

11.
赵亚男  李朝品 《昆虫学报》2020,63(3):354-364
【目的】测定和分析甜果螨Carpoglyphus lactis线粒体基因组全序列,并在线粒体基因组水平探讨其在真螨总目(Acariformes)中的系统发育地位,为真螨总目分类及果螨科线粒体基因组研究提供科学依据。【方法】挑取实验室饲养的甜果螨成螨,用传统的酚氯仿抽提法和试剂盒提取法提取甜果螨基因组DNA。然后采用节肢动物或螨类线粒体基因的通用引物PCR扩增出甜果螨线粒体基因cox1,cob,rrnS和nad4-nad5的部分序列;再设计种特异性引物进行Long-PCR扩增和步移法测序,测出甜果螨线粒体基因组全序列。应用SeqMan, SEQUIN 9.0和tRNAscan等生物信息学软件,对甜果螨线粒体基因组的基因结构等进行生物信息学分析。最后基于17种真螨总目螨类的蛋白质编码基因,采用最大似然法构建系统发育树。【结果】甜果螨线粒体全基因组总长为14 060 bp(GenBank登录号:MN073839),为典型的闭合双链DNA分子,共由37个基因组成,包括13个蛋白质编码基因(PCGs)、22个tRNA基因和2个rRNA基因;甜果螨线粒体基因组还包括1个大的非编码区(large n...  相似文献   

12.
The Saccharomyces cerevisiae tmp3 mutant is deficient in the mitochondrial enzyme complex that participates in the formation of one-carbon-group-tetrahydrofolate coenzymes, serine transhydroxymethylase, dihydrofolate reductase, and thymidylate synthetase, thus leading to multiple nutritional requirements of dTMP, adenine, histidine, and methionine. The tmp3 mutant quickly loses its mitochondrial genome even when grown on fully supplemented medium or on a high concentration of 5-formyl tetrahydrofolate, which replaces all the four requirements. A study of the loss of the mitochondrial genome by following several mitochondrial genetic markers showed that there was a preferential specific loss of a large region of the mitochondrial genome, covering mit ts983, Er, Cr, and mit ts982 up to OrI, and retention of the region of Pr and mit tscs1297. A kinetic study showed that there was a preferentially rapid loss of the region covering the mit+ alleles ts983 to tscs902 at the rate of 10% per generation.  相似文献   

13.
北京鸭线粒体基因组全序列测定和分析   总被引:1,自引:0,他引:1  
线粒体DNA作为遗传标记,已在家鸡(Gallus gallus)和家鹅(Anser anser)的研究中取得了重大进展,而对家鸭(Anas platyrhychos domesticus)的研究却很少.本研究参照近源物种线粒体基因组序列设计15对引物,通过PCR扩增、测序、拼接,获得北京鸭(A.platyrhychos)线粒体基因组全序列,初步分析其特点和各基因的定位.结果显示,北京鸭线粒体基因组全长16 604 bp,碱基组成为29.19%A、22.20%T、15.80%G、32.81%C,包含13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码控制区(D-loop),基因组成及排列顺序与其他鸟类相似.基于线粒体D-loop区全序列,用N-J法构建了7种雁形目鸟类系统进化树,结果表明,北京鸭与绿头鸭(A.platyrhychos)系统进化关系较近.  相似文献   

14.
Mitochondrial genomes have been extensively studied for phylogenetic purposes and to investigate intra- and interspecific genetic variations. In recent years, numerous groups have undertaken sequencing of platyhelminth mitochondrial genomes. Haplorchis taichui (family Heterophyidae) is a trematode that infects humans and animals mainly in Asia, including the Mekong River basin. We sequenced and determined the organization of the complete mitochondrial genome of H. taichui. The mitochondrial genome is 15,130 bp long, containing 12 protein-coding genes, 2 ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). Like other trematodes, it does not encode the atp8 gene. All genes are transcribed from the same strand. The ATG initiation codon is used for 9 protein-coding genes, and GTG for the remaining 3 (nad1, nad4, and nad5). The mitochondrial genome of H. taichui has a single long non-coding region between trnE and trnG. H. taichui has evolved as being more closely related to Opisthorchiidae than other trematode groups with maximal support in the phylogenetic analysis. Our results could provide a resource for the comparative mitochondrial genome analysis of trematodes, and may yield genetic markers for molecular epidemiological investigations into intestinal flukes.  相似文献   

15.
A new neonatal syndrome characterized by intrauterine growth retardation, lactic acidosis, aminoaciduria, liver hemosiderosis, and early death was recently described. The pathogenesis of this disease is unknown. The mode of inheritance is autosomal recessive, and so far only 17 cases have been reported in 12 Finnish families. Here we report the assignment of the locus for this new disease to a restricted region on chromosome 2q33-37. We mapped the disease locus in a family material insufficient for traditional linkage analysis by using linkage disequilibrium, a possibility available in genetic isolates such as Finland. The primary screening of the genome was performed with samples from nine affected individuals in five families. In the next step, conventional linkage analysis was performed in eight families, with a total of 12 affected infants, and finally the locus assignment was proved by demonstrating linkage disequilibrium to the regional markers in 20 disease chromosomes. Linkage analysis restricted the disease locus to a 3-cM region between markers D2S164 and D2S2359, and linkage disequilibrium with the ancestral haplotype restricted the disease locus further to the immediate vicinity of marker D2S2250.  相似文献   

16.
17.
The mitochondrial genome of Drosophila melanogaster is a circular DNA molecule of mol wt 12.35 X 10(6) daltons. A single region accounting for approx. 25% of this molecule can be reproducibly differentially denatured presumably because it is rich in adenine and thymine. We have mapped on the circular mitochondrial genome of D. melanogaster the relative positions of this adenine-thymine (A-T) rich region and the sites sensitive to cleavage by the restriction endonuclease EcoRI, using agarose gel electrophoresis and electron microscopy. Digestion of mitochondrial DNA (mtDNA) molecules to completion with EcoRI resulted in the production of four fragments, A, B, C, and D which represent (+/- SD) 58.9 +/- 1.1%, 27.5 +/- 0.8%, 8.9 +/- 0.5%, and 4.5 +/- 0.3%, of the circular genome length, respectively. Fragments produced by EcoRI digestion and circularized by incubation at 2 degrees C also fell into four distinct length groups with means (+/- SD) of 59.1 +/- 0.5%, 27.5 +/- 0.5%, 9.2 +/- 0.3%, and 4.6 +/- 0.2% of the circular genome length. From a consideration of the lengths of fragments resulting from incomplete EcoRI digestion, it was determined that the arrangement of the fragments in the circular genome was A-C-B-D. By electron microscope examination of partially denatured EcoRI fragments, the A-T- rich region was shown to be located in the A fragment closer to one end than to the other. By similar partial-denaturation studies of fragments resulting from incomplete EcoRI digestion, it was determined that, in the circular genome, of the two EcoRI sites which define the limits of the A fragment, the site between the A and D fragment lies nearest to the A-T-rich region.  相似文献   

18.
A study of an invertebrate mitochondrial genome, that of the blowflyPhormia regina, has been initiated to compare its structural and functional relatedness to other metazoan mitochondrial genomes. A restriction map of mitochondrial DNA (mtDNA) isolated from sucrose gradient-purified mitochondria has been established using a combination of single and double restriction endonuclease digestions and hybridizations with isolated mtDNA fragments, revealing a genome size of 17.5 kilobases (kb). A number of mitochondrial genes including those encoding the 12 S and 16 S ribosomal RNA, the cytochromec oxidase I subunit (COI) and an unidentified open reading frame (URF2) have been located on thePhormia mtDNA by Southern blot analysis using as probes both isolated mtDNA fragments and oligonucleotides derived from the sequences of previously characterized genes from rat andDrosophila yakuba mtDNAs. These data indicate that for those regions examined, the mitochondrial genome organization of blowfly mtDNA is the same as that ofDrosophila yakuba, the order being COI-URF2-12 S-16 S. These data also report the presence of an A + T-rich region, located as a 2.5-kb region between the URF2 and the 12 S rRNA genes, and its amplification by the polymerase chain reaction is described.  相似文献   

19.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

20.
The complete mitochondrial genome and a set of polymorphic microsatellite markers were identified by 454 pyrosequencing (1/16th of a plate) for the New Caledonian rainforest spider-ant Leptomyrmex pallens. De novo genome assembly recovered the entire mitochondrial genome with mean coverage of 8.9-fold (range 1–27). The mitogenome consists of 15,591 base pairs including 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The genome arrangement is typical of insect taxa and very similar to the only other published ant mitogenome from the Solenopsis genus, with the main differences consisting of translocations and inversions of tRNAs. A total of 13 polymorphic loci were also characterized using 41 individuals from a single population in the Aoupinié region, corresponding to workers from 21 nests and 16 foraging workers. We observed moderate genetic variation across most loci (mean number of alleles per locus = 4.50; mean expected heterozygosity = 0.53) with evidence of only two loci deviating significantly from Hardy–Weinberg equilibrium due to null alleles. Marker independence was confirmed with tests for linkage disequilibrium. Most loci cross amplified for three additional Leptomyrmex species. The annotation of the mitogenome and characterization of microsatellite markers will provide useful tools for assessing the colony structure, population genetic patterns, and dispersal strategy of L. pallens in the context of rainforest fragmentation in New Caledonia. Furthermore, this paper confirms a recent line of evidence that comprehensive mitochondrial data can be obtained relatively easily from small next-generation sequencing analyses. Greater synthesis of next-generation sequencing data will play a significant role in expanding the taxonomic representation of mitochondrial genome sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号