首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A single base mutation at nucleotide position 3460 (nt 3460) in the ND1 gene in human mtDNA was found to be associated with Leber hereditary optic neuroretinopathy (LHON). The G-to-A mutation converts an alanine to a threonine at the 52d codon of the gene. The mutation also abolishes an AhaII restriction site and thus can be detected easily by RFLP analysis. The mutation was found in three independent Finnish LHON families but in none of the 60 controls. None of the families with the nt 3460 mutation in ND1 had the previously reported nt 11778 mutation in the ND4 gene. The G-to-A change at nt 3460 is the second mutation so far detected in LHON.  相似文献   

4.
The presence or absence of a recently observed mitochondrial DNA (mtDNA) mutation associated with Leber hereditary optic neuroretinopathy (LHON) was tested in 19 Finnish families with cases of LHON. Leukocyte and muscle DNA from individuals with optic atrophy, microangiopathy, or normal fundi from maternal lineages were studied by Southern blot analysis, using mouse mtDNA as a hybridization probe. The mtDNA mutation, detected as SfaNI site polymorphism, was seen in 10 of the 19 families. In one family, the mutation was seen only in the two affected individuals, indicating recent origin for the mutation. Nine families and 28 maternally unrelated controls did not show the mutation. The results imply that alternative mtDNA mutations are associated with LHON and that this genetic heterogeneity may be the cause of the interfamilial variation in the clinical expression of LHON. In the families showing the SfaNI site mutation, the mutation was homoplasmic in all individuals irrespective of their disease status, suggesting that the intrafamilial variation in the clinical expression is not due to different ratios of mutant versus normal mtDNA.  相似文献   

5.
Relatively little is known about the factors maintaining mitochondrial DNA (mtDNA) sequence diversity in humans. A detailed understanding of the transmission genetics of mtDNA has been partly hampered by the lack of evidence for heteroplasmic individuals. Among families with Leber hereditary optic neuroretinopathy, we found a maternal lineage with individuals heteroplasmic for a single nucleotide change, and we were able to follow the segregation of polymorphic mitochondrial genomes over 3 generations. The results show that rapid segregation can occur but also that the level of heteroplasmy can be maintained from one generation to another. In this family the disease phenotype is associated with the mtDNA sequence change, confirming the involvement of the mutation in the disease.  相似文献   

6.
The mitochondrial complex I genes were sequenced in seven Leber hereditary optic neuroretinopathy (LHON) families without the ND4/11778 and ND1/3460 mutations. Four replacement mutations restricted only to LHON families were found, one in the ND1 gene at nt 4025, and three in the ND5 gene at nt 12811, 13637, and 13967. The mutations did not change evolutionarily conserved amino acids suggesting that they are not primary LHON mutations in these families. They may be considered as secondary LHON mutations serving as exacerbating factors in an appropriate genetic background. A complex III mutation, cyt b/15257, has been suggested to be one of the primary mutations causing LHON. Its presence was determined for 23 Finnish LHON families, and it was detected in two families harboring the ND4/11778 mutation. Similarly, complex IV mutation COI/7444 was screened in Finnish LHON families, and it was found in one family carrying the ND1/3460 mutation.  相似文献   

7.
About two-thirds of patients with Leber hereditary optic neuroretinopathy (LHON) harbor mutations in mitochondrial DNA at positions 11778 (ND4) or 3460 (ND1). Thus, the clinical diagnosis of LHON can often be confirmed with mutation analysis. Detection of pathogenic mutations and quantification of heteroplasmy has mainly relied on PCR and restriction site analysis and densitometric scanning. We applied the recently developed solid-phase minisequencing method, based on primerguided nucleotide incorporation, to the simultaneous detection and quantitation of the ND4/11778 and ND1/3460 mutations. The method was highly sensitive, heteroplasmy as low as 1.5% being easily detected. Rapid, reproducible, and accurate results prove solid-phase minisequencing to be the method of choice for quantitative analysis of LHON mutations.  相似文献   

8.
A mutation in the mitochondrial DNA at nt 11,778 has recently been found in Leber hereditary optic neuroretinopathy (LHON), a maternally inherited ocular disease. The mutation is located in the ND4 gene encoding subunit 4 of the respiratory chain enzyme NADH dehydrogenase. The mutation was subsequently not found in 9 of the 20 known Finnish families with LHON, implying that there are at least two different mutations associated with the disease. Using direct sequencing of PCR-amplified mtDNA, we have now sequenced the entire ND4 region in the families without the nt 11,778 mutation to find the other mutations. No new mutations in the ND4 region were found, suggesting that the putative mtDNA mutation in these families may be in the coding regions for other subunits of NADH dehydrogenase enzyme. The sequence of ND4 gene as found to be highly homogeneous.  相似文献   

9.
Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON.  相似文献   

10.
11.
Cytochrome b mutations in Leber hereditary optic neuropathy.   总被引:11,自引:0,他引:11  
New mutations were discovered in the apocytochrome b gene in Leber hereditary optic neuropathy probands who did not harbor either of the two known Complex I mutations (positions 3,460 and 11,778). A mutation at position 15,257 was found in eight independent probands which changed a highly conserved aspartate to asparagine, was not found in controls, and appears to be pathogenetically significant. The 15,257 mutation occurred in association with a known synergistic mutation at position 13,708 in 7/8 probands and in association with a new apocytochrome b mutation at position 15,812 in 4/8 probands. Mutations in Complex III genes may be involved in Leber hereditary optic neuropathy and multiple, simultaneous mutations occur frequently.  相似文献   

12.
13.
张阿梅  姚永刚 《遗传》2013,35(2):123-135
Leber遗传性视神经病变(Leber hereditary optic neuropathy, LHON; MIM535000)是最典型的线粒体遗传病之一, 主要由线粒体DNA (Mitochondrial DNA, mtDNA)3个原发突变(Primary mutation, m.11778G>A、m.3460G> A 和m.14484T>C)引起。患者表现为无痛性双侧视力下降或丧失, 主要易感人群为青壮年男性。不完全外显(Incomplete penetrance)和性别偏好(Gender bias)是该病亟待解决的两大难题, 目前尚无有效的预防及治疗措施。文章对近年来LHON 的分子发病机制、临床症状及特点、体外实验和动物模型研究、预防及治疗等方面的研究进展进行综述, 并集中介绍了我们近期对于我国LHON患者的研究结果。  相似文献   

14.
15.
Summary Leukocyte mitochondrial DNA (mtDNA) from 17 Finnish families iwth Leber's hereditary optic neuroretinopathy and 70 maternally unrelated controls as well as skeletal muscle mtDNA from four of the Leber families and three controls was analyzed with 30 restriction enzymes. By this means, over 10% of the nucleotides of mtDNA were screened. No major deletion or insertion was found in any of the mtDNAs studied. The restriction fragment patterns of mtDNA showed no evidence of mtDNA heteroplasmy (mixture of different mtDNA types) in either blood or muscle cells. In all, 24 mtDNA types were observed in the material. In the maternal lines of Leber families, 11 mtDNA types were found, indicating no recent common maternal ancestor for the Finnish Leber families. In spite of several previously unknown polymorphisms, no mutation of mtDNA could be found exclusively in families with Leber's disease. However, a couple of mutations leading to amino acid replacements of mitochondrially encoded proteins were observed in certain Leber families only. These mutations have occurred in genes coding for subunits of NADH dehydrogenase, suggesting that a defect of the respiratory chain complex I may cause Leber's disease.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号