首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present two modelling frameworks for studying dynamic anistropy in connective tissue, motivated by the problem of fibre alignment in wound healing. The first model is a system of partial differential equations operating on a macroscopic scale. We show that a model consisting of a single extracellular matrix material aligned by fibroblasts via flux and stress exhibits behaviour that is incompatible with experimental observations. We extend the model to two matrix types and show that the results of this extended model are robust and consistent with experiment. The second model represents cells as discrete objects in a continuum of ECM. We show that this model predicts patterns of alignment on macroscopic length scales that are lost in a continuum model of the cell population.  相似文献   

2.
We propose a computational simulation framework for describing cancer-therapeutic transport in the lung. A discrete vascular graph model (VGM) is coupled to a double-continuum model (DCM) to determine the amount of administered therapeutic agent that will reach the cancer cells. An alveolar cell carcinoma is considered. The processes in the bigger blood vessels (arteries, arterioles, venules and veins) are described by the VGM. The processes in the alveolar capillaries and the surrounding tissue are represented by a continuum approach for porous media. The system of equations of the coupled discrete/continuum model contains terms that account for degradation processes of the therapeutic agent, the reduction of the number of drug molecules by the lymphatic system and the interaction of the drug with the tissue cells. The functionality of the coupled discrete/continuum model is demonstrated in example simulations using simplified pulmonary vascular networks, which are designed to show-off the capabilities of the model rather than being physiologically accurate.  相似文献   

3.
Volokh KY 《Biorheology》2004,41(3-4):263-269
A phenomenological continuum mechanics framework for modeling growth of living tissues is proposed. Tissue is considered as an open system where mass is not conserved. The momentum balance is completed with the full-scale mass balance. Constitutive equations define simple growing materials. 'Thermoelastic' formulation of a simple growing material is specified. Within this framework traction free growth of a cylinder is considered. It is shown that the theory accommodates the case where stresses are not generated in uniform volumetric growth. It is also found that surface growth corresponds to a boundary layer solution of the governing equations.  相似文献   

4.
In this paper we present a new model framework for studying vascular tumour growth, in which the blood vessel density is explicitly considered. Our continuum model comprises conservation of mass and momentum equations for the volume fractions of tumour cells, extracellular material and blood vessels. We include the physical mechanisms that we believe to be dominant, namely birth and death of tumour cells, supply and removal of extracellular fluid via the blood and lymph drainage vessels, angiogenesis and blood vessel occlusion. We suppose that the tumour cells move in order to relieve the increase in mechanical stress caused by their proliferation. We show how to reduce the model to a system of coupled partial differential equations for the volume fraction of tumour cells and blood vessels and the phase averaged velocity of the mixture. We consider possible parameter regimes of the resulting model. We solve the equations numerically in these cases, and discuss the resulting behaviour. The model is able to reproduce tumour structure that is found in vivo in certain cases. Our framework can be easily modified to incorporate the effect of other phases, or to include the effect of drugs.  相似文献   

5.
The unequal-division model for budding yeast is used to formulate a population-balance model for the transient behavior of populations of these organisms. The model consists of linear partial differential equations coupled through algebraic equations. It is shown how the solution of this system of equations can be obtained in a systematic stepwise fashion. The special case of a population subjected to a step change in growth rate is described in some detail, and solutions for two special cases are determined for transients following an age-distribution perturbation. It is shown how experimental data on transient behavior of a cell population can yield information on single-cell mass-synthesis kinetics and on the manner in which individual cells control certain critical parameters in the cell cycle.  相似文献   

6.
When modelling tissue-level cardiac electrophysiology, a continuum approximation to the discrete cell-level equations, known as the bidomain equations, is often used to maintain computational tractability. Analysing the derivation of the bidomain equations allows us to investigate how microstructure, in particular gap junctions that electrically connect cells, affect tissue-level conductivity properties. Using a one-dimensional cable model, we derive a modified form of the bidomain equations that take gap junctions into account, and compare results of simulations using both the discrete and continuum models, finding that the underlying conduction velocity of the action potential ceases to match up between models when gap junctions are introduced at physiologically realistic coupling levels. We show that this effect is magnified by: (i) modelling gap junctions with reduced conductivity; (ii) increasing the conductance of the fast sodium channel; and (iii) an increase in myocyte length. From this, we conclude that the conduction velocity arising from the bidomain equations may not be an accurate representation of the underlying discrete system. In particular, the bidomain equations are less likely to be valid when modelling certain diseased states whose symptoms include a reduction in gap junction coupling or an increase in myocyte length.  相似文献   

7.
A simple phenomenological framework for modeling growth of living tissues is proposed. Growth is defined as a change of mass and configuration of the tissue. Tissue is considered as an open system where mass conservation is violated and the full-scale mass balance is applied. A possible structure of constitutive equations is discussed with reference tosimple growing materials. 'Thermoelastic' formulation of the simple growing material is specified. Within this framework traction free growth of cylindrical and spherical bodies is examined. It is shown that the theory accommodates the case where stresses are not generated in uniform volumetric growth. It is also found that surface growth corresponds to aboundary layersolution of the governing equations. This finding proves the ability of continuum mechanics to describe surface growth. The latter is contrary to the usual use of purely kinematical theories, which do not involve balance and constitutive equations, for treating surface growth.  相似文献   

8.
Intercellular signalling is key in determining cell fate. In closely packed tissues such as epithelia, juxtacrine signalling is thought to be a mechanism for the generation of fine-grained spatial patterns in cell differentiation commonly observed in early development. Theoretical studies of such signalling processes have shown that negative feedback between receptor activation and ligand production is a robust mechanism for fine-grained pattern generation and that cell shape is an important factor in the resulting pattern type. It has previously been assumed that such patterns can be analysed only with discrete models since significant variation occurs over a lengthscale concomitant with an individual cell; however, considering a generic juxtacrine signalling model in square cells, in O’Dea and King (Math Biosci 231(2):172–185 2011), a systematic method for the derivation of a continuum model capturing such phenomena due to variations in a model parameter associated with signalling feedback strength was presented. Here, we extend this work to derive continuum models of the more complex fine-grained patterning in hexagonal cells, constructing individual models for the generation of patterns from the homogeneous state and for the transition between patterning modes. In addition, by considering patterning behaviour under the influence of simultaneous variation of feedback parameters, we construct a more general continuum representation, capturing the emergence of the patterning bifurcation structure. Comparison with the steady-state and dynamic behaviour of the underlying discrete system is made; in particular, we consider pattern-generating travelling waves and the competition between various stable patterning modes, through which we highlight an important deficiency in the ability of continuum representations to accommodate certain dynamics associated with discrete systems.  相似文献   

9.
A mathematical model is developed that describes the reduction in volume of a vascular tumor in response to specific chemotherapeutic administration strategies. The model consists of a system of partial differential equations governing intratumoral drug concentration and cancer cell density. In the model the tumor is treated as a continuum of two types of cells which differ in their proliferation rates and their responses to the chemotherapeutic agent. The balance between cell proliferation and death within the tumor generates a velocity field which drives expansion or regression of the spheroid. Insight into the tumor's response to therapy is gained by applying a combination of analytical and numerical techniques to the model equations.  相似文献   

10.
This paper studies the behavior of a large body of neurons in the continuum limit. A mathematical characterization of such systems is obtained by approximating the inverse input-output nonlinearity of a cell (or an assembly of cells) by three adjustable linearized sections. The associative spatio-temporal patterns for storage in the neural system are obtained by using approaches analogous to solving space-time field equations in physics. A noise-reducing equation is also derived from this neural model. In addition, conditions that make a noisy pattern retrievable are identified. Based on these analyses, a visual cortex model is proposed and an exact characterization of the patterns that are storable in this cortex is obtained. Furthermore, we show that this model achieves pattern association that is invariant to scaling, translation, rotation and mirror-reflection.  相似文献   

11.
Xing J  Wang H  Oster G 《Biophysical journal》2005,89(3):1551-1563
Two theoretical formalisms are widely used in modeling mechanochemical systems such as protein motors: continuum Fokker-Planck models and discrete kinetic models. Both have advantages and disadvantages. Here we present a "finite volume" procedure to solve Fokker-Planck equations. The procedure relates the continuum equations to a discrete mechanochemical kinetic model while retaining many of the features of the continuum formulation. The resulting numerical algorithm is a generalization of the algorithm developed previously by Fricks, Wang, and Elston through relaxing the local linearization approximation of the potential functions, and a more accurate treatment of chemical transitions. The new algorithm dramatically reduces the number of numerical cells required for a prescribed accuracy. The kinetic models constructed in this fashion retain some features of the continuum potentials, so that the algorithm provides a systematic and consistent treatment of mechanical-chemical responses such as load-velocity relations, which are difficult to capture with a priori kinetic models. Several numerical examples are given to illustrate the performance of the method.  相似文献   

12.
The model of bacteriophage predation on bacteria in a chemostat formulated by Levin et al. (Am Nat 111:3–24, 1977) is generalized to include a distributed latent period, distributed viral progeny release from infected bacteria, unproductive adsorption of phages to infected cells, and possible nutrient uptake by infected cells. Indeed, two formulations of the model are given: a system of delay differential equations with infinite delay, and a more general infection-age model that leads to a system of integro-differential equations. It is shown that the bacteria persist, and sharp conditions for persistence and extinction of phages are determined by the reproductive ratio for phage relative to the phage-free equilibrium. A novel feature of our analysis is the use of the Laplace transform.  相似文献   

13.
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations.  相似文献   

14.
The objective of this article is the derivation of a continuum model for mechanics of red blood cells via multiscale analysis. On the microscopic level, we consider realistic discrete models in terms of energy functionals defined on networks/lattices. Using concepts of Γ-convergence, convergence results as well as explicit homogenisation formulae are derived. Based on a characterisation via energy functionals, appropriate macroscopic stress–strain relationships (constitutive equations) can be determined. Further, mechanical moduli of the derived macroscopic continuum model are directly related to microscopic moduli. As a test case we consider optical tweezers experiments, one of the most common experiments to study mechanical properties of cells. Our simulations of the derived continuum model are based on finite element methods and account explicitly for membrane mechanics and its coupling with bulk mechanics. Since the discretisation of the continuum model can be chosen freely, rather than it is given by the topology of the microscopic cytoskeletal network, the approach allows a significant reduction of computational efforts. Our approach is highly flexible and can be generalised to many other cell models, also including biochemical control.  相似文献   

15.
A three-variable model of a continuous fermentation process characterised by product inhibition is studied. It is shown that if the cell to substrate yield is constant, the system cannot have periodic solutions. If, on the other hand, the yield term is a variable function of substrate concentration, the model will exhibit oscillations in the cells, substrate and product concentrations in the form of Hopf bifurcation in the underlying system of three nonlinear, ordinary differential equations which comprise the model.  相似文献   

16.
The motility of cells crawling on a substratum has its origin in a thin cell organ called lamella. We present a 2-dimensional continuum model for the lamella dynamics of a slowly migrating cell, such as a human keratinocyte. The central components of the model are the dynamics of a viscous cytoskeleton capable to produce contractile and swelling stresses, and the formation of adhesive bonds in the plasma cell membrane between the lamella cytoskeleton and adhesion sites at the substratum. We will demonstrate that a simple mechanistic model, neglecting the complicated signaling pathways and regulation processes of a living cell, is able to capture the most prominent aspects of the lamella dynamics, such as quasi-periodic protrusions and retractions of the moving tip, retrograde flow of the cytoskeleton and the related accumulation of focal adhesion complexes in the leading edge of a migrating cell. The developed modeling framework consists of a nonlinearly coupled system of hyperbolic, parabolic and ordinary differential equations for the various molecular concentrations, two elliptic equations for cytoskeleton velocity and hydrodynamic pressure in a highly viscous two-phase flow, with appropriate boundary conditions including equalities and inequalities at the moving boundary. In order to analyse this hybrid continuum model by numerical simulations for different biophysical scenarios, we use suitable finite element and finite volume schemes on a fixed triangulation in combination with an adaptive level set method describing the free boundary dynamics.  相似文献   

17.
The ability to invade tissue is one of the hallmarks of cancer. Cancer cells achieve this through the secretion of matrix degrading enzymes, cell proliferation, loss of cell–cell adhesion, enhanced cell–matrix adhesion and active migration. Invasion of tissue by the cancer cells is one of the key components in the metastatic cascade, whereby cancer cells spread to distant parts of the host and initiate the growth of secondary tumours (metastases). A better understanding of the complex processes involved in cancer invasion may ultimately lead to treatments being developed which can localise cancer and prevent metastasis. In this paper we formulate a novel continuum model of cancer cell invasion of tissue which explicitly incorporates the important biological processes of cell–cell and cell–matrix adhesion. This is achieved using non-local (integral) terms in a system of partial differential equations where the cells use a so-called “sensing radius” R to detect their environment. We show that in the limit as R→0 the non-local model converges to a related system of reaction–diffusion–taxis equations. A numerical exploration of this model using computational simulations shows that it can form the basis for future models incorporating more details of the invasion process.  相似文献   

18.
In this paper we present a continuum mathematical model for a multicellular spheroid that mimics the micro-environment within avascular tumor growth. The model consists of a coupled system of non-linear convection-diffusion-reaction equations. This system is solved using a previously developed conservative Galerkin characteristics method. In the model considered, there are three cell types: the proliferative cells, the quiescent non-dividing cells which stay in the G0 phase of the cell cycle and the necrotic cells. The model includes viable cell diffusion, diffusion of cellular material and the removal of necrotic cells. We assume that the nutrients diffuse passively and are consumed by the proliferative and quiescent tumor cells depending on the availability of resources (oxygen, glucose, etc.). The numerical simulations are performed using different sets of parameters, including biologically realistic ones, to explore the effects of each of these model parameters on reaching the steady state. The present results, taken together with those reported earlier, indicate that the removal of necrotic cells and the diffusion of cellular material have significant effects on the steady state, reflecting growth saturation, the number of viable cells, and the spheroid size.  相似文献   

19.
A model is proposed for the formation of singularities in the director field of orientation-selective cells in the visual cortex. The model consists of a two-layer associative neural net. The forward connections converge to a continuum of steady states. The degeneracy is removed by lateral interactions. It is shown that in many cases the director field contains critical points which are identified as the vortex locations. Received: 1 January 1993/Accepted in revised form: 8 September 1993  相似文献   

20.
We propose a multidimensional continuum model for heterogeneous growth of biofilm systems with multiple species and multiple substrates. The new model provides a deterministic framework for the study of the interactions between several spe1cies and their effects on biofilm heterogeneity. It consists of a system of partial differential equations derived on the basis of conservation laws and reaction kinetics. The derivation and key assumptions are presented. The assumptions used are a combination of those used in the established one dimensional model, due to Wanner and Gujer, and for the viscous fluid model, of Dockery and Klapper. The work of Wanner and Gujer in particular has been extensively used through the years, and thus this new model is an extension to several spatial dimensions of an already proven working model. The model equations are solved using numerical techniques, for purposes of simulation and verification. The new model is applied to two different biofilm systems in several spatial dimensions, one of which is equivalent to a system originally studied by Wanner and Gujer. Dimensionless formulations for these two systems are given, and numerical simulation results with varying initial conditions are presented. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号