首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaggregation of dissociated cells of marine sponges, resulting in reformation of functional sponges, is a calcium-dependent process mediated by large, proteoglycan-like molecules termed aggregation factors (AF). During aggregation, species-specific sorting of cells is often observed. We purified and characterized AFs from three different sponge species and investigated their role in species-specific aggregation using novel approaches. The calcium-dependent association between purified AFs is species-specific in most combinations, as was shown in overlay assays and bead-sorting assays with AFs immobilized onto colored beads. Species-specific interactions of living cells and AF-beads resulted in incorporation of only homospecific AF-beads into reforming cell aggregates. Sequences from peptides obtained from the AF core proteins could all be aligned to the sequence of one species, the Microciona prolifera AFp3 core protein. In contrast to this similarity, major species-specific differences were seen in carbohydrate composition and in the response of AFs to specific carbohydrate-recognizing antibodies. In summary, our data point to a prominent role for the calcium-dependent association of AFs in recognition processes during aggregation. As this association of AFs occurs via carbohydrate-carbohydrate interactions, we speculate that the specificity of those interactions may be fundamental to recognition mechanisms required for regeneration of individuals from dissociated cells and for rejection of foreign material by sponge individuals.  相似文献   

2.
Marine sponges (Porifera) display an ancestral type of cell-cell adhesion, based on carbohydrate-carbohydrate interaction. The aim of the present work was to investigate further details of this adhesion by using, as a model, the in vitro aggregation of dissociated sponge cells. Our results showed the participation of sulfated polysaccharides in this cell-cell interaction, as based on the following observations: (1) a variety of sponge cells contained similar sulfated polysaccharides as surface-associated molecules and as intracellular inclusions; (2) 35S-sulfate metabolic labeling of dissociated sponge cells revealed that the majority (two thirds) of the total sulfated polysaccharide occurred as a cell-surface-associated molecule; (3) the aggregation process of dissociated sponge cells demanded the active de novo synthesis of sulfated polysaccharides, which ceased as cell aggregation reached a plateau; (4) the typical well-organized aggregates of sponge cells, known as primmorphs, contained three cell types showing sulfated polysaccharides on their cell surface; (5) collagen fibrils were also produced by the primmorphs in order to fill the extracellular spaces of their inner portion and the external layer surrounding their entire surface. Our data have thus clarified the relevance of sulfated polysaccharides in this system of in vitro sponge cell aggregation. The molecular basis of this system has practical relevance, since the culture of sponge cells is necessary for the production of molecules with biotechnological applications.  相似文献   

3.
Reaggrcgation of dissociated cells of marine sponges, resulting in reformation of functional sponges, is a calcium-dependent process mediated by large, proteoglycan-like molecules termed aggregation factors (AF). During aggregation, species-specific sorting of cells is often observed. We purified and characterized AFs from three different sponge species and investigated their role in species-specific aggregation using novel approaches. The calcium-dependent association between purified AFs is species-specific in most combinations, as was shown in overlay assays and bead-sorting assays with AFs immobilized onto colored beads. Species-specific interactions of living cells and AF-beads resulted in incorporation of only homospecific AF-beads into reforming cell aggregates. Sequences from peptides obtained from the AF core proteins could all be aligned to the sequence of one species, the Microciona prolifera AFp3 core protein. In contrast to this similarity, major species-specific differences were seen in carbohydrate composition and in the response of AFs to specific carbohydrate-recognizing antibodies. In summary, our data point to a prominent role for the calcium-dependent association of AFs in recognition processes during aggregation. As this association of AFs occurs via carbohydrate -carbohydrate interactions, we speculate that the specificity of those interactions may be fundamental to recognition mechanisms required for regeneration of individuals from dissociated cells and for rejection of foreign material by sponge individuals.  相似文献   

4.
The adhesion force and specificity in the first experimental evidence for cell-cell recognition in the animal kingdom were assigned to marine sponge cell surface proteoglycans. However, the question whether the specificity resided in a protein or carbohydrate moiety could not yet be resolved. Here, the strength and species specificity of cell-cell recognition could be assigned to a direct carbohydrate-carbohydrate interaction. Atomic force microscopy measurements revealed equally strong adhesion forces between glycan molecules (190-310 piconewtons) as between proteins in antibody-antigen interactions (244 piconewtons). Quantitative measurements of adhesion forces between glycans from identical species versus glycans from different species confirmed the species specificity of the interaction. Glycan-coated beads aggregated according to their species of origin, i.e., the same way as live sponge cells did. Live cells also demonstrated species selective binding to glycans coated on surfaces. These findings confirm for the first time the existence of relatively strong and species-specific recognition between surface glycans, a process that may have significant implications in cellular recognition.  相似文献   

5.
Cells from the sponge Microciona prolifera display on their surfaces large but defined proteoglycan complexes (Microciona aggregation factor = MAF) that mediate species-specific cell aggregation by a process requiring high calcium ion concentrations. An analysis of MAF-MAF interactions based on binding studies of MAF to glutaraldehyde-fixed sponge cells and MAF-derivatized beads demonstrates that the requirement for high calcium concentrations can be overcome by extremely small amounts of certain polycations such as polybrene, polylysine, or histones. For measurements of the affinity of these substances to MAF, a method was adopted that partitions 125I-labeled MAF between dextran and polyethyleneglycol in an aqueous two-phase polymer system depending on the net charge of the complex formed. Since only polymers of positive charges affect binding and partitioning at low concentrations, large areas of interaction similar to those found in glycosaminoglycans are proposed for MAF. Through a multitude of appropriately spaced interaction sites, the rather weak selectivity of single charged sites could in such a system still provide strong enough specificities to explain species-specific cell sorting. The biological significance of naturally occurring polycations as well as extracellular calcium includes their role in cell recognition, sorting out as well as the ordered and continual streaming movements of groups of cells seen in the mesohyl of live sponges.  相似文献   

6.
7.
繁茂膜海绵原细胞富集细胞团培养过程中的细胞迁移规律   总被引:1,自引:0,他引:1  
曹旭鹏  张卫 《生物工程学报》2008,24(12):2133-2134
海绵是重要的生物活性物质来源, 近10年来, 从海绵中发现的具有生物活性的新化合物占海洋生物来源的30%以上, 并且大多具有显著的抗肿瘤, 抗艾滋病病毒的活性。但是, 由于海绵生物量不能满足这些活性物质进一步研究和商业化的需求, 目前仅有一种活性物质被成功的商业化, 这不仅是商业开发的损失, 也是提高人类生活质量活动的一种损失。为了解决海绵供给不足的问题, 人们进行了包括化学合成、海绵养殖以及海绵细胞培养在内的多种尝试,目前的研究结果表明, 海绵细胞离体培养技术是最有可能彻底解决海绵供给不足的途径之一。但是由于海绵自身的特殊性, 还没有人成功的建立起海绵细胞系以满足生产需要。人们发现, 海绵细胞的相互接触对于离体海绵细胞长期培养至关重要。经过多年的探索, 大连化物所海洋生物产品工程组建立了开发出了海绵原细胞富集细胞团培养技术, 通过对海绵组织内的原细胞进行富集来获得可长期培养的海绵细胞。海绵原细胞是海绵组织内的“干细胞”, 具有很强的分化、增殖潜力, 同时也是海绵组织内负责消化的主要细胞类型。为了探索海绵原细胞的增殖、分化规律, 本研究基于海绵原细胞富集细胞团培养体系, 构建了海绵细胞培养实时观测平台, 对繁茂膜海绵原细胞、领细胞、上皮细胞3类主要海绵细胞类型在海绵细胞团形成及生长的全过程进行观察, 了解不同类型细胞迁移规律的变化。通过对视频记录进行分析,发现离散的海绵细胞与细胞团内的海绵细胞具有截然相反的运动规律, 海绵细胞的运动具有很强的协同性。伴随原细胞在细胞团内不停息的迁移, 还观察到海绵细胞团内新生骨针的迁移以及细胞间进行颗粒物质的传递。这些信息的获得, 将有助于进一步了解不同细胞的功能与作用, 也有助于在此基础上探索海绵细胞的增殖、分化控制规律。  相似文献   

8.
Summary Dissociated sponge cell system has proved to be a useful model to study the process of cell aggregation both on cellular and subcellular level. The purpose of this review is to discuss recent results obtained from experiments with the marine sponge Geodia cydonium.Dissociated cells form functional aggregates during a process which can be sub-divided into three phases: first, formation of small primary aggregates in the presence of Ca2+; second, formation of secondary aggregates in the presence of an aggregation factor and third, reconstitution of a functional system of watercontaining channels by rearrangement in the secondary aggregates.On subcellular level a series of macromolecules are known which are involved in the control of aggregation and separation of sponge cells: Aggregation factor, aggregation receptor, anti-aggregation receptor, glucuronidase, ß-glucuronosyltransferase, ß- ß-galactosidase and a lectin. These components might be linked in the following sequence: (a) Activation of the aggregation receptor by its enzymic glucuronylation; (b) Adhesive recognition of the cells, mediated by the aggregation factor and the glucuronylated aggregation receptor; (c) Inactivation of the aggregation receptor by its deglucuronylation with the membrane-associated ß-glucuronidase; (d) Cell separation due to either the loss of the recognition site (glucuronic acid) of the aggregation receptor for the aggregation factor or to an inactivation of the aggregation factor by the anti-aggregation receptor. The activity of the anti-aggregation receptor is most likely controlled by the Geodia lectin.The events leading to cell-cell recognition cause a change in the following metabolic events: Increase of oxygen uptake, decrease of cyclic AMP level, increase of cyclic GMP level and stimulation of programmed syntheses.Abbreviations AF aggregation factor - CPP circular proteid particle - AR aggregation receptor - aAR anti-aggregation receptor - CMF calcium- and magnesium-free artificial sea water - ASW calcium- and magnesium-containing artificial sea water This paper is dedicated to PROF. DR. R. K. ZAHN on the occasion of his 60th birthday.  相似文献   

9.
Species-specific adhesion of dissociated cells from the marine sponge Microciona prolifera is mediated by a Mr = 2 x 10(7) proteoglycan-like aggregation factor (MAF) via two highly polyvalent functional domains, a cell-binding and a self-interaction domain. Glycopeptide N-glycosidase F release of a major glycan of Mr = 6.3 gamma 10(3) (G-6) from the MAF protein core resulted in the loss of cell binding activity, indicating a role of this polysaccharide molecule in MAF-cell association. The G-6 glycan was isolated and purified after complete Pronase digestion of MAF using gel electrophoresis, gel filtration, and ion exchange chromatography. Quantification of the amount of carbohydrate recovered in G-6 showed that one MAF molecule has about 950 repeats of this glycan. In its monomeric state G-6 did not display any measurable binding to cells (K alpha less than or equal to 10(3) M-1). Intermolecular cross-linking of the G-6 glycan with glutaraldehyde resulted, however, in the concomitant recovery of polyvalency (about 2200 repeats of G-6 per polymer of Mr greater than or equal to 1.5 x 10(7) and species-specific high cell binding affinity (K alpha = 1.6 x 10(9) M-1) but not of the MAF-MAF self-interaction activity. Thus, the G-6 glycan is the multiple low affinity cell-binding site involved in cell-cell recognition and adhesion of sponge cells. The G-6 glycan has 7 glucuronic acids, 3 fucoses, 2 mannoses, 5 galactoses, 14 N-acetylglucosamines, 2 sulfates, and 1 asparagine. Such a unique chemical composition indicates a new type of structure which includes features of glycosaminolycans and N-linked polysaccharides.  相似文献   

10.
Sponges are the simplest extant animals but nevertheless possess self-nonself recognition that rivals the specificity of the vertebrate MHC. We have used dissociated cell assays and grafting techniques to study tissue acceptance and rejection in the marine sponge Microciona prolifera. Our data show that allogeneic, but not isogeneic, cell contacts trigger cell death and an increased expression of cell adhesion and apoptosis markers in cells that accumulate in graft interfaces. Experiments investigating the possible existence of immune memory in sponges indicate that faster second set reactions are nonspecific. Among the different cellular types, gray cells have been proposed to be the sponge immunocytes. Fluorescence confocal microscopy results from intact live grafts show the migration of autofluorescent gray cells toward graft contact zones and the inhibition of gray cell movements in the presence of nontoxic concentrations of cyclosporin A. These results suggest that cell motility is an important factor involved in sponge self/nonself recognition. Communication between gray cells in grafted tissues does not require cell contact and is carried by an extracellular diffusible marker. The finding that a commonly used immunosuppressor in human transplantation such as cyclosporin A blocks tissue rejection in marine sponges indicates that the cellular mechanisms for regulating this process in vertebrates might have appeared at the very start of metazoan evolution.  相似文献   

11.
Early Metazoans had to evolve the first cell adhesion system addressed to maintaining stable interactions between cells constituting different individuals. As the oldest extant multicellular animals, sponges are good candidates to have remnants of the molecules responsible for that crucial innovation. Sponge cells associate in a species-specific process through multivalent calcium-dependent interactions of carbohydrate structures on an extracellular membrane-bound proteoglycan termed aggregation factor. Single-molecule force spectroscopy studies of the mechanics of aggregation factor self-binding indicate the existence of intermolecular carbohydrate adhesion domains. A 200-kDa aggregation factor glycan (g200) involved in cell adhesion exhibits interindividual differences in size and epitope content which suggest the existence of allelic variants. We have purified two of these g200 distinct forms from two individuals of the same sponge species. Comparison of allotypic versus isotypic g200 binding forces reveals significant differences. Surface plasmon resonance measurements show that g200 self-adhesion is much stronger than its binding to other unrelated glycans such as chondroitin sulfate. This adhesive specificity through multiple carbohydrate binding domains is a type of cooperative interaction that can contribute to explain some functions of modular proteoglycans in general. From our results it can be deduced that the binding strength/surface area between two aggregation factor molecules is comparable with that of focal contacts in vertebrate cells, indicating that strong carbohydrate-based cell adhesions evolved at the very start of Metazoan history.  相似文献   

12.
Two extracellular matrix cell surface proteins which bind the proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) and which may function as physiological receptors for MAF were identified and characterized for the first time. By probing nitrocellulose blots of nonreducing sodium dodecyl sulfate gels containing whole sponge cell protein with iodinated MAF, a 210- and a 68-kDa protein, which have native molecular masses of approximately 200-400 and 70 kDa, were identified. MAF binding to blots is species-specific. It is also sensitive to reduction and is completely abolished by pretreatment of live cells with proteases, as was cellular aggregation, indicating that the 210- and 68-kDa proteins may be located on the cell surface. The additional observations that the 68 kDa is an endoglycosidase F-sensitive glycoprotein and that antisera against whole sponge cells or membranes can immunoprecipitate the 210 kDa when prebound to intact cells are consistent with a cell surface location. Both proteins can be isolated from sponge cell membranes and from the sponge skeleton (insoluble extracellular matrix), but the 210-kDa MAF-binding protein can also be found in the soluble extracellular matrix (buffer washes of cells and skeleton) as well. A third MAF-binding protein of molecular mass 95 kDa was also found in the sponge extracellular matrix but rarely on cells. Both of the cell-associated 210- and 68-kDa proteins are nonintegral membrane proteins, based on Triton X-114 phase separation, flotation of liposomes containing sponge membrane lysates, and their extraction from membranes by buffer washes. Both proteins bind MAF affinity resins, indicating that they each exhibit a moderate affinity for MAF under native conditions. They can also be separated from each other and from the bulk of the protein in an octylpolyoxyethylene extract of membranes by fast protein liquid chromatography Mono Q anion exchange chromatography, as assessed by native dot blot and denaturing Western blot assays. Although neither protein bound to heparin, gelatin, hexosamine, or uronic acid-Sepharose resins, their affinity for an invertebrate proteoglycan, their roles in sponge cell adhesion, and their peripheral membrane protein natures suggest that they may represent early invertebrate analogs of cell-associated vertebrate extracellular matrix adhesion proteins, such as fibronectin or vitronectin, or else an entirely novel set of cell adhesion molecules.  相似文献   

13.
Cells of the sponge Microciona prolifera dissociated in Ca,Mg-free sea water reaggregate upon addition of Ca, an observation classically attributed to the requirement for Ca of a species-specific aggregation factor. We now report that, unexpectedly, extracellular Ca is not required during aggregation; brief Ca pulses (1-3 sec) terminated by excess EDTA suffice to prepare the cells for aggregation by Ca ionophores (e.g. A23187). We also show that phorbol myristate acetate (PMA) promotes aggregation of pulse-prepared cells. Since PMA and A23187 act synergistically in Microciona, the "twin signal" hypothesis, signalling by Ca and protein kinase C in parallel, is validated in this primitive animal.  相似文献   

14.
15.
Single cells of the marine sponge Geodia cydonium aggregate species-specifically in the presence of a soluble aggregation factor to form large cell clumps. A lectin isolated from the same sponge species does not cause agglutination of Geodia cells but agglutinates only cells from heterologous species (e.g. Tethya lyncurium, Hemimycale columella, Pellina semitubulosa, Cacospongia scalaris, Verongia aerophoba). The process of agglutination is independent of divalent cations (they do not affect the agglutination process at concentrations up to 50 mM), occurs at 2°C, causes a reduction in the viability of the cells and results in an inhibition of programmed syntheses. The observed differences between the properties of cell agglutination (effect of a lectin in a heterologous system) and cell aggregation (effect of an aggregation factor in the homologous system) is discussed. Cell aggregation is dependent upon the presence of an aggregation factor, the presence of cations and an incubation temperature 2̃0°C; cell aggregation results in a stimulation of programmed syntheses. Cell agglutination requires a heterologous macromolecule (e.g. lectin), it is independent of divalent cations and causes inhibition of programmed syntheses in the cells.  相似文献   

16.
Cell recognition and adhesion involving many kinds of cell surface molecules operate via homotypic and/or heterotypic protein-protein and protein-carbohydrate binding. Our investigations in marine sponges have provided direct evidence for a novel molecular mechanism of multivalent glycan-glycan binding related to cellular interactions. Biochemical characterization of purified proteoglycans revealed the presence of specific acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight, containing fucose, glucuronic or galacturonic acids, and pyruvate and sulfate groups may represent a new class of primordial proteoglycans, named by us glyconectins. The thermodynamic and kinetic approaches of biological macromolecule interactions do not provide a direct measurement of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Using the atomic force microscopy (AFM), we provided the first quantitative evaluation of the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion glyconectin proteoglycans (AGPs) is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. (i) As a model, we selected the cell AGP isolated from the marine sponge Microciona prolifera; it mediates in vivo cell recognition and aggregation via homotypic, species-specific, multivalent, and calcium ion-dependent glycan-glycan interactions. (ii) Under physiological conditions, a large cohesive force theoretically able to hold the weight of approximately 1600 cells was measured. (iii) The C-2 autocomplementarity model for AGP-AGP interactions; and (iv) the requirement of the calcium ionic bridges suggest also that the self-recognition and multivalency of glycan-glycan interactions are essential for cell adhesion. (v) The evolution of glyconectin-like proteoglycan molecules may have been a fundamental prerequisite for the emergence of the first multicellular organisms. Glycan-glycan interactions may thus provide a new paradigm for molecular self-recognition.  相似文献   

17.
From the marine sponge Geodia cydonium a series of macromolecules have been isolated and characterized which are involved in the control of aggregation and separation of sponge cells; these include aggregation factor, aggregation receptor, anti-aggregation receptor, β-glucuronidase, β-glucuronosyltransferase, β-galactosyltransferase, β-galactosidase and a lectin. These components might be linked in the following sequence: (a) activation of the aggregation receptor by its enzymic glucuronylaion; (b) adhesive recognition of the cells, mediated by the aggregation factor and the glucuronylated aggregation receptor; (c) inactivation of the aggregation receptor by its deglucuronylation with the membrane-associated β-glucuronidase; (d) cell separation due either to the loss of the recognition site (glucuronic acid) of the aggregation receptor for the aggregation factor or to an inactivation of the aggregation factor by the anti-aggregation receptor. The activity of the anti-aggregation receptor is probably controlled by the Geodia lectin.  相似文献   

18.
Immobilized glycoconjugates for cell recognition studies   总被引:2,自引:0,他引:2  
Specific cell-cell recognition and adhesion may involve cell surface glycoconjugates on one cell binding the complementary carbohydrate receptors on an apposing cell surface. Such interactions have been modeled by immobilizing simple synthetic glycosides, glycoproteins, glycosaminoglycans, and glycolipids on otherwise inert plastic surfaces and incubating them with intact cells. Using this approach, the ability of several cell types to recognize specific carbohydrates has been demonstrated. This carbohydrate-directed cell adhesion may depend on cell surface carbohydrate receptors which mediate both the initial specific adhesion and complex postrecognition cellular responses. While the relationship of the cell adhesion demonstrated here to cell-cell recognition in vivo has yet to be determined, this well-controlled biochemical approach may reveal new information on the way in which cells analyze and respond to their immediate external environment.  相似文献   

19.
Gangliosides support neural retina cell adhesion   总被引:10,自引:0,他引:10  
Cell surface carbohydrates and complementary carbohydrate receptors may mediate cell-cell recognition during neuronal development. To model such interactions, we developed a technique to test the ability of cell surface lipids (particularly glycosphingolipids) to mediate specific cell recognition and adhesion (Blackburn, C.C., and Schnaar, R.L. (1983) J. Biol. Chem. 258, 1180-1188). When cells were incubated on plastic microwells adsorbed with various glycolipids, carbohydrate-specific cell adhesion was readily detected. We report here the use of this method to study adhesion of embryonic chick neural retina cells to purified cell surface lipids. Rapid and specific cell adhesion was observed when the neural retina cells were incubated on surfaces adsorbed with gangliosides (an important class of neuronal cell surface glycoconjugates) but not on surfaces adsorbed with various neutral glycosphingolipids, phospholipids, or sulfatide. This suggests that the observed cell adhesion was specific for the carbohydrate moiety of the adsorbed ganglioside and was not due to nonspecific ionic or hydrophobic interactions. Although the surface density of adsorbed lipid required to support cell adhesion was the same for all gangliosides examined, the extent of adhesion varied when different purified gangliosides were used. Ganglioside-specific adhesion was not dependent on the presence of calcium (at 37 degrees C) and was attenuated by pretreatment of the cells with trypsin. The extent of ganglioside-directed neural retinal cell adhesion varied with embryonic age. These results imply that gangliosides may play a role in cell-cell recognition in the developing nervous system.  相似文献   

20.
A pair of sponge species, Microciona prolifera and Halichondria bowerbanki, which lack mutual species specificity in their aggregation "factor", are useful in establishing the mechanisms of action of these factors. These sponges were dissociated both mechanically, which leaves the factor on the cell surface, and by Humphrey's (1963) method, which isolates the factor from the cells. The adhesive specificities which arose, in the various combinations tested, point to an intercellular factor bridge consisting of a single symmetrical unit. An analysis of most other workers' results is consistent with this interpretation. However, MacLennan and Dodd's (1967) results using other species would require a bridge consisting of two or more asymmetrical units. Differences were found in the specificity of adhesion of various types of cells within a single species. This presents a heretofore unconsidered problem in assesing the adhesive factor's mechanism of action. Three structurally distinct cell types were separated from a suspension of dissociated Microciona cells by velocity sedimentation. These cells differ greatly in adhesiveness. The differences in adhesion are correlated with numbers and positions of cells incorporated into aggregates. Such differences are considered in explaining the mechanism of action of the factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号