首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processing of the GagPol polyprotein precursor of human immunodeficiency virus type 1 (HIV-1) is a critical step in viral assembly and replication. The HIV-1 protease (PR) is translated as part of GagPol and is both necessary and sufficient for precursor processing. The PR is active only as a dimer; enzyme activation is initiated when the PR domains in two GagPol precursors dimerize. The precise mechanism by which the PR becomes activated and the subsequent initial steps in precursor processing are not well understood. However, it is clear that processing is initiated by the PR domain that is embedded within the precursor itself. We have examined the earliest events in precursor processing using an in vitro assay in which full-length GagPol is cleaved by its embedded PR. We demonstrate that the embedded, immature PR is as much as 10,000-fold less sensitive to inhibition by an active-site PR inhibitor than is the mature, free enzyme. Further, we find that different concentrations of the active-site inhibitor are required to inhibit the processing of different cleavage sites within GagPol. Finally, our results indicate that the first cleavages carried out by the activated PR within GagPol are intramolecular. Overall, our data support a model of virus assembly in which the first cleavages occur in GagPol upstream of the PR. These intramolecular cleavages produce an extended form of PR that completes the final processing steps accompanying the final stages of particle assembly by an intermolecular mechanism.  相似文献   

2.
M Kotler  G Arad    S H Hughes 《Journal of virology》1992,66(11):6781-6783
We have introduced mutations into the region of the genome of human immunodeficiency virus type 1 (HIV-1) that encodes the cleavage sites between the viral protease (PR) and the adjacent upstream region of the polyprotein precursor. Segments containing these mutations were introduced into plasmids, and the retroviral proteins were expressed in Escherichia coli. The mutations prevented cleavage between the PR and the adjacent polypeptide; however, other PR cleavage sites in the polyprotein were cleaved normally, showing that the release of free PR is not a prerequisite for the appropriate processing of HIV-1 precursors.  相似文献   

3.
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.  相似文献   

4.
Activity of avian retroviral protease expressed in Escherichia coli.   总被引:13,自引:11,他引:2       下载免费PDF全文
M Kotler  R A Katz    A M Skalka 《Journal of virology》1988,62(8):2696-2700
  相似文献   

5.
Maturation of infectious human immunodeficiency virus (HIV) particles requires proteolytic cleavage of the structural polyproteins by the viral proteinase (PR), which is itself encoded as part of the Gag-Pol polyprotein. Expression of truncated PR-containing sequences in heterologous systems has mostly led to the autocatalytic release of an 11-kDa species of PR which is capable of processing all known cleavage sites on the viral precursor proteins. Relatively little is known about cleavages within the nascent virus particle, on the other hand, and controversial results concerning the active PR species inside the virion and the relative activities of extended PR species have been reported. Here, we report that HIV type 1 (HIV-1) particles of four different strains obtained from different cell lines contain an 11-kDa PR, with no extended PR proteins detectable. Furthermore, mutation of the N-terminal PR cleavage site leading to production of an N-terminally extended 17-kDa PR species caused a severe defect in Gag polyprotein processing and a complete loss of viral infectivity. We conclude that N-terminal release of PR from the HIV-1 polyprotein is essential for viral replication and suggest that extended versions of PR may have a transient function in the proteolytic cascade.  相似文献   

6.
Human immunodeficiency virus (HIV) Gag precursor protein is cleaved by viral protease (PR) within GagPol precursor protein to produce the mature matrix (MA), capsid, nucleocapsid, and p6 domains. This processing is termed maturation and required for HIV infectivity. In order to understand the intracellular sites and mechanisms of HIV maturation, HIV molecular clones in which Gag and GagPol were tagged with FLAG and hemagglutinin epitope sequences at the C-termini, respectively were made. When coexpressed, both Gag and GagPol were incorporated into virus particles. Temporal analysis by confocal microscopy showed that Gag and GagPol were relocated from the cytoplasm to the plasma membrane. Mature cleaved MA was observed only at sites on the plasma membrane where both Gag and GagPol had accumulated, indicating that Gag processing occurs during Gag/GagPol assembly at the plasma membrane, but not during membrane trafficking. Fluorescence resonance energy transfer imaging suggested that these were the primary sites of GagPol dimerization. In contrast, with overexpression of GagPol alone an absence of particle release was observed, and this was associated with diffuse distribution of mature cleaved MA throughout the cytoplasm. Alteration of the Gag-to-GagPol ratio similarly impaired virus particle release with aberrant distributions of mature MA in the cytoplasm. However, when PR was inactive, it seemed that the Gag-to-GagPol ratio was not critical for virus particle release but virus particles encasing unusually large numbers of GagPol molecules were produced, these particles displaying aberrant virion morphology. Taken together, it was concluded that the Gag-to-GagPol ratio has significant impacts on either intracellular distributions of mature cleaved MA or the morphology of virus particles produced.  相似文献   

7.
The maturation of human immunodeficiency type-1 virions is accomplished through the proteolytic processing of Gag and GagPol precursor proteins by the viral protease (PR). Since virions must be assembled at the cell surface from uncleaved precursor molecules, intracellular activation of PR must be inhibited. We have previously developed a system where the intracellular activity of PR, associated with GagPol, was inhibited by the expression of Gagin trans. The disproportionate synthesis of Gag inhibits the activation of PR in the cytoplasm. Sequences capable of mediating this inhibition were localized to capsid. In this communication, the region of HIV-1 capsid capable of mediating inhibition was further defined and shown to require the major homology region of capsid within Gag.  相似文献   

8.
H Burstein  D Bizub    A M Skalka 《Journal of virology》1991,65(11):6165-6172
Assembly and maturation of retroviral particles requires the aggregation and controlled proteolytic cleavage of polyprotein core precursors by a precursor-encoded protease (PR). Active, mature retroviral PR is a dimer, and the accumulation of precursors at sites of assembly may facilitate subunit interaction and subsequent activation of this enzyme. In addition, it has been suggested that cellular cytoplasmic components act as inhibitors of PR activity, so that processing is delayed until the nascent virions leave this compartment and separate from the surface of host cells. To investigate the mechanisms that control PR activity during virus assembly, we studied the in vivo processing of retroviral gag precursors that contain tandemly linked PR subunits in which dimerization is concentration independent. Sequences encoding four different linked protease dimers were independently joined to the end of the Rous sarcoma virus (RSV) gag gene in a simian virus 40-based plasmid vector which expresses a myristoylated gag precursor upon transfection of COS-1 cells. Three of these plasmids produced gag precursors that were incorporated into viruslike particles and proteolytically cleaved by the dimers to mature core proteins that were indistinguishable from the processed products of wild-type gag. The amount of viral gag protein that was assembled and packaged in these transfections was inversely related to the relative proteolytic activities of the linked PR dimers. The fourth gag precursor, which contained the most active linked PR dimer, underwent rapid intracellular processing and did not form viruslike particles. In the absence of the plasma membrane targeting signal, processing of all four linked PR dimer-containing gag precursors was completed entirely within the cell. From these results, we conclude that the delay in polyprotein core precursor processing that occurs during normal virion assembly does not depend on a cytoplasmic inhibitor of PR activity. We suggest that dimer formation is not only necessary but may be sufficient for the initiation of PR-directed maturation of gag and gag-pol precursors.  相似文献   

9.
The retroviral protease is a key enzyme in a viral multienzyme complex that initiates an ordered sequence of events leading to virus assembly and propagation. Viral peptides are initially synthesized as polyprotein precursors; these precursors undergo a number of proteolytic cleavages executed by the protease in a specific and presumably ordered manner. To determine the role of individual protease cleavage sites in Ty1, a retrotransposon from Saccharomyces cerevisiae, the cleavage sites were systematically mutagenized. Altering the cleavage sites of the yeast Ty1 retrotransposon produces mutants with distinct retrotransposition phenotypes. Blocking the Gag/PR site also blocks cleavage at the other two cleavage sites, PR/IN and IN/RT. In contrast, mutational block of the PR/IN or IN/RT sites does not prevent cleavage at the other two sites. Retrotransposons with mutations in each of these sites have transposition defects. Mutations in the PR/IN and IN/RT sites, but not in the Gag/PR site, can be complemented in trans by endogenous Ty1 copies. Hence, the digestion of the Gag/PR site and release of the protease N terminus is a prerequisite for processing at the remaining sites; cleavage of PR/IN is not required for the cleavage of IN/RT, and vice versa. Of the three cleavage sites in the Gag-Pol precursor, the Gag/PR site is processed first. Thus, Ty1 Gag-Pol processing proceeds by an ordered pathway.  相似文献   

10.
11.
The mature proteins of retroviruses originate as a result of proteolytic cleavages of polyprotein precursors. Retroviruses encode proteases responsible for several of these processing events, making them potential antiviral drug targets. A 99-amino acid HIV-1 protease, produced by chemical synthesis or by expression in bacteria, is shown here to hydrolyze peptides corresponding to all of the known cleavage sites in the HIV-1 gag and pol polyproteins. It does not hydrolyze peptides corresponding to an env cleavage site or a distantly related retroviral gag cleavage site.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) protease (PR) and p6(Pol) are translated as part of the Gag-Pol polyprotein after a ribosomal frameshift. PR is essential to virus replication and is responsible for cleaving Gag and Gag-Pol precursors, but the role of p6(Pol) in HIV-1 infection is poorly understood. Here, we report that (i) PR is present in mature HIV-1 virions primarily as a p6(Pol)-PR fusion protein; (ii) HIV-1 PR cleaves viral precursor proteins expressed in bacterial cells at the Phe-Leu bond (positions 1639 to 1642) located at the junction of the NC and p6(Pol) proteins, releasing the p6(Pol)-PR fusion protein; and (iii) purified p6(Pol)-PR fusion protein undergoes autocleavage in vitro at at least three sites.  相似文献   

13.
A 99-amino acid protein having the deduced sequence of the protease from human immunodeficiency virus type 2 (HIV-2) was synthesized by the solid phase method and tested for specificity. The folded peptide catalyzes specific processing of a recombinant 43-kDa GAG precursor protein (F-16) of HIV-1. Although the protease of HIV-2 shares only 48% amino acid identity with that of HIV-1, the HIV-2 enzyme exhibits the same specificity toward the HIV-1 GAG precursor. Fragments of 34, 32, 24, 10, and 9 kDa were generated from F-16 GAG incubated with the protease. N-terminal amino acid sequence analysis of proteolytic fragments indicate that cleavage sites recognized by HIV-2 protease are identical to those of HIV-1 protease. The verified cleavage sites in F-16 GAG appear to be processed independently, as indicated by the formation of the intermediate fragments P32 and P34 in nearly equal ratios. The site nearest the amino terminus is quite conserved between the two viral GAG proteins (...VSQNY-PIVQN...in HIV-1,...KGGNY-PVQHV...in HIV-2). In contrast, the putative second site (...IPFAA-AQQKG...) of HIV-2 GAG shares minimal sequence identity with site 2 of HIV-1 GAG (...SATIM-MQRGN...). These sequence variations in the substrates suggest higher order structural features that may influence recognition by the proteases. Pepstatin A inhibits HIV-2 protease, whereas 1,10-phenanthroline and phenylmethylsulfonylfluoride do not; these results are in agreement with the finding that proteases of HIV and other retroviruses are aspartyl proteases.  相似文献   

14.
Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3' end of the HIV-1 gag-pol transframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6(Gag) protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNA(PR2). A disrupted translation of gag-pol mRNA induced at the PNA(PR2)-annealing site resulted in a decreased synthesis of Pr160(Gag-Pol) polyprotein, hence the viral protease, a predominant expression of Pr55(Gag) devoid of a fully functional p6(Gag) protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNA(PR2) abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target.  相似文献   

15.
The mature human immunodeficiency virus type 1 proteinase (PR; 11 kDa) can cleave all interdomain junctions in the Gag and Gag-Pol polyprotein precursors. To determine the activity of the enzyme in its precursor form, we blocked release of mature PR from a truncated Gag-Pol polyprotein by introducing mutations into the N-terminal Phe-Pro cleavage site of the PR domain. The mutant precursor autoprocessed efficiently upon expression in Escherichia coli. No detectable mature PR was released; however, several PR-related products ranging in size from approximately 14 to 18 kDa accumulated. Products of the same size were generated when mutant precursors were digested with wild-type PR. Thus, PR can utilize cleavage sites in the region upstream of the PR domain, resulting in the formation of extended PR species. On the basis of active-site titration, the PR species generated from mutated precursor exhibited wild-type activity on peptide substrates. However, the proteolytic activity of these extended enzymes on polyprotein substrates provided exogenously was low when equimolar amounts of extended and wild-type PR proteins were compared. Mammalian cells expressing the mutated precursor produced predominantly precursor and considerably reduced amounts of mature products. Released particles consisted mostly of uncleaved or partially cleaved polyproteins. Our results suggest that precursor forms of PR can autoprocess but are less efficient in processing of the Gag precursor for formation of mature virus particles.  相似文献   

16.
HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected mammalian cells. Here, we report that a covariance analysis of miniprecursor (p6*-PR) sequences derived from drug naïve patients identified a series of amino acid pairs that vary together across independent viral isolates. These covariance pairs were used to build the first topology map of the miniprecursor that suggests high levels of interaction between the p6* peptide and the mature PR. Additionally, several PR-PR covariance pairs are located far from each other (>12 Å Cα to Cα) relative to their positions in the mature PR structure. Biochemical characterization of one such covariance pair (77–93) revealed that each residue shows distinct preference for one of three alkyl amino acids (V, I, and L) and that a polar or charged amino acid at either of these two positions abolishes precursor autoprocessing. The most commonly observed 77V is preferred by the most commonly observed 93I, but the 77I variant is preferred by other 93 variances (L, V, or M) in supporting precursor autoprocessing. Furthermore, the 77I93V covariant enhanced precursor autoprocessing and Gag polyprotein processing but decreased the mature PR activity. Therefore, both covariance and biochemical analyses support a functional association between residues 77 and 93, which are spatially distant from each other in the mature PR structure. Our data also suggests that these covariance pairs differentially regulate precursor autoprocessing and the mature protease activity.  相似文献   

17.
We have used feline immunodeficiency virus (FIV) protease (PR) as a mutational system to study the molecular basis of substrate-inhibitor specificity for lentivirus PRs, with a focus on human immunodeficiency virus type 1 (HIV-1) PR. Our previous mutagenesis studies demonstrated that discrete substitutions in the active site of FIV PR with structurally equivalent residues of HIV-1 PR dramatically altered the specificity of the mutant PRs in in vitro analyses. Here, we have expanded these studies to analyze the specificity changes in each mutant FIV PR expressed in the context of the natural Gag-Pol polyprotein ex vivo. Expression mutants were prepared in which 4 to 12 HIV-1-equivalent substitutions were made in FIV PR, and cleavage of each Gag-Pol polyprotein was then assessed in pseudovirions from transduced cells. The findings demonstrated that, as with in vitro analyses, inhibitor specificities of the mutants showed increased HIV-1 PR character when analyzed against the natural substrate. In addition, all of the mutant PRs still processed the FIV polyprotein but the apparent order of processing was altered relative to that observed with wild-type FIV PR. Given the importance of the order in which Gag-Pol is processed, these findings likely explain the failure to produce infectious FIVs bearing these mutations.  相似文献   

18.
19.
Previously it was demonstrated using a model precursor that processing at the N terminus of the HIV-1 protease (PR) precedes processing at its C terminus. We now show the expression, purification, and kinetics of the autoprocessing reaction of a PR precursor linked to 53 amino acids of the native flanking transframe region (DeltaTFP-p6(pol)) of Gag-Pol and containing its two native cleavage sites. The PR contains the two cysteine residues exchanged to alanines, mutations that do not alter the kinetics or the structural stability of the mature PR. DeltaTFP-p6(pol)-PR, which encompasses the known PR inhibitor sequence Glu-Asp-Leu within DeltaTFP, undergoes cleavage at the DeltaTFP/p6(pol) and p6(pol)/PR sites in two consecutive steps to produce the mature PR. Both DeltaTFP-p6(pol)-PR and p6(pol)-PR exhibit low intrinsic enzymatic activity. The appearance of the mature PR is accompanied by a large increase in catalytic activity. It follows first-order kinetics in protein concentration with a rate constant of 0.13 +/- 0.01 min(-1) in 0.1 M acetate at pH 4.8. The pH-rate profile for the observed first-order rate constant is bell-shaped with two ionizable groups of pK(a) 4.9 and 5.1. The rate constant also exhibits approximately 7-fold higher sensitivity to urea denaturation as compared with that of the mature PR, suggesting that the cleavage at the N terminus of the PR domain from the precursor leads to the stabilization of the dimeric structure.  相似文献   

20.
A second protease of foot-and-mouth disease virus.   总被引:33,自引:22,他引:11       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号