首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient syntheses of structurally novel 4-substituted benzo[b]thiophene-2-carboxamidmes 1–3, which selectively inhibit urokinase-type plasminogen activator (uPA) with IC50 values of 70–320 nM, are described. The key intermediate, methyl 4-iodobenzo[b]thiophene-2-carboxylate (7), is prepared from 3-fluoroiodobenzene in two steps in 70% overall yield via fluorine-directed metalation/formylation and subsequent thiophene annulation. Amidination of ester 7 gives the 320 nM inhibitor 1. Palladium-catalyzed arylacetylene and vinyl stannane couplings with ester 7 or 4-iodobenzo[b]thiophene-2-carbonitrile (16, derived from 7), respectively, followed by amidination leads to the more potent inhibitors 2 (IC50 = 133 nM) and 3 (IC50 = 70 nM). These compounds represent an important new class of synthetic uPA inhibitors, with carboxamidine 3 being the most potent selective inhibitor currently described in the literature.  相似文献   

2.
Steroid sulfatase (STS) regulates the formation of active steroids from systemic precursors, such as estrone sulfate and dehydroepiandrosterone sulfate (DHEAS). In breast tissues, this pathway is a source for local production of estrogens, which support the growth of endocrine-dependent tumours. Therefore, inhibitors of STS could have therapeutic potential. In this study, we report on substituted chromenone sulfamates as a novel class of non-steroidal irreversible inhibitors of STS. The compounds are substantially more potent (6- to 80-fold) than previously described types of non-steroidal inhibitors when tested against purified STS. In MCF-7 breast cancer cells, they inhibit STS activity with IC50 below 100 pM. Importantly, the compounds also potently block estrone sulfate-stimulated growth of MCF-7 cells, again with IC50 below 100 pM. For one compound, we also observed a lack of any estrogenic effect at high concentrations (1 μM). We also demonstrate for the first time that STS inhibitors can block the DHEAS-stimulated growth of MCF-7 cells. Interestingly, this cannot be achieved with specific inhibitors of the aromatase, suggesting that stimulation of MCF-7 cell growth by DHEAS follows an aromatase-independent pathway. This gives further justification to consider steroid sulfatase inhibitors as potential drugs in the therapy of breast cancer.  相似文献   

3.
Substituted 1-[(benzofuran-2-yl)-phenylmethyl]-imidazoles are a new class of potent aromatase inhibitor with in vitro IC50 values < 10 nM for certain members using human placental enzyme. At a dose of 2 mg/kg in PMSG-stimulated rats, selected compounds effectively reduce the oestradiol levels by 82–98%.  相似文献   

4.
Curcumin, a relatively non-toxic natural product isolated from Curcuma longa, is a modest inhibitor of the HIV-1 (1050 = 100 μM) and HIV-2 (IC50 = 250 μM) proteases. Simple modifications of the curcumin structure raise the IC50 value but complexes of the central dihydroxy groups of curcumin with boron lower the IC50 to a value as low as 6 μM. The boron complexes are also time-dependent inactivators of the HIV proteases. The increased affinity of the boron complexes may reflect binding of the orthogonal domains of the inhibitor in intersecting sites within the substrate-binding cavity of the enzyme, while activation of the ,β-unsaturated carbonyl group of curcumin by chelation to boron probably accounts for time-dependent inhibition of the enzyme.  相似文献   

5.
Acanthifolicin (9,10-epithio-okadaic acid from Pandoras acanthifolium) inhibited protein phosphatase-1 (PP1) similarly to okadaic acid (IC50 = 20 nM and 19 nM, respectively) but was slightly less active against protein phosphatase-2A (PP2A) (IC50 1 nM and 0.2 nM, respectively). Methyl esterification of acanthifolicin sharply reduced its activity. PP2A was inhibited with an IC50 = 5.0 μM, whilst PP1 was inhibited < 10% at 250 μM toxin. Okadaic acid methyl ester was similarly inactive whereas dinophysistoxin-1 (35-methyl okadaic acid) inhibited PP1/2A almost as potently as okadaic acid. Pure acanthifolicin/okadaic acid methyl ester may be useful as specific inhibitors of PP2A at 1–10 μM concentrations in vitro and perhaps in vivo. The data also indicate that a region on these toxins important for PP1/2A inhibition comprises the single carboxyl group.  相似文献   

6.
A number of 2-phenylindole sulfamates with lipophilic side chains in 1- or 5-position of the indole were synthesized and evaluated as steroid sulfatase (estrone sulfatase) inhibitors. Most of the new sulfamates inhibited the enzymatic hydrolysis of estrone sulfate in MDA-MB 231 breast cancer cells with IC50 values between 2 nM and 1 μM. A favorable position for a long side chain is the nitrogen of a carbamoyl group at C-5 of the indole when the phenyl ring carries the sulfamate function. These derivatives inhibit gene activation in estrogen receptor (ER)-positive MCF-7 breast cancer cells in submicromolar concentrations and reduce cell proliferation with IC50 values of ca. 1 μM. All of the potent inhibitors were devoid of estrogenic activity and have the potential for in vivo application as steroid sulfatase inhibitors.  相似文献   

7.
Gourlet, P., A. Vandermeers, P. Vertongen, J. Rathe, P. De Neef, J. Cnudde, M. Waelbroeck and P. Robberecht. Development of high affinity selective VIP1 receptor agonists. Peptides 18(10) 1539–1545, 1997.—The biological effects of VIP are mediated by at least two VIP receptors: the VIP1 and the VIP2 receptors that were cloned in rat, human and mice. As the mRNA coding for each receptor are located in different tissues, it is likely that each receptor modulates different functions. It is therefore of interest to obtain selective agonists for each receptor subtype. In the present work, we achieved the synthesis of two VIP1 receptor selective agonists derived from secretin and GRF. [R16]chicken secretin had IC50 values of binding of 1, 10,000, 20, and 3000 nM for the rat VIP1-, VIP2-, secretin- and PACAP receptors, respectively. This peptide, however, had a weaker affinity for the human VIP1 receptor (IC50 of 60 nM). The chimeric, substituted peptide [K15,R16,L27]VIP(1-7)/GRF(8-27) had IC50 values of binding of 1, 10,000, 10,000 and 30,000 nM for the rat VIP1-, VIP2-, secretin- and PACAP receptors, respectively. Furthermore, its also showed an IC50 of 0.8 nM for the human VIP1 receptor and a low affinity for the human VIP2 receptor. It is unlikely that this GRF analogue interacted with a high affinity to the pituitary GRF receptors as it did not stimulate rat pituitary adenylate cyclase activity. The two described analogues stimulated maximally the adenylate cyclase activity on membranes expressing each receptor subtype.  相似文献   

8.
Three metabolites of diethylpropion (1), (±)-2-ethylamino-1-phenyl-propan-1-one (2), (1R,2S)-(−)-N,N-diethylnorephedrine (3a) and (1S,2R)-(−)-N,N-diethylnorephedrine (3b) were synthesized. Their uptake and release effects with biogenic amine transporters were evaluated. A major finding of this study is that the in vivo activity of diethylpropion on biogenic amine transporters is most likely due to metabolite 2 as diethylpropion (1) and the metabolites 3a and 3b showed little or no effect in the assays studied. These studies also revealed that 2 acted as a substrate at the norepinephrine (IC50=99 nM) and serotonin transporters (IC50=2118 nM) and an uptake inhibitor at the dopamine transporter (IC50=1014 nM). The potent action of 2 at the NE transporter supports the hypothesis that amphetamine-type subjective effects may be mediated in part by brain norepinephrine.  相似文献   

9.
The inhibitory effect of Y-24180, 4-(2-chlorophenyl)-2-[2-(4-isobutylphenyl)ethyl]-6,9-dimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine, on platelet activating factor (PAF)-induced platelet aggregation and the specific binding of 3H-PAF to platelets was compared with other thienodiazepine derivatives, WEB 2086 and etizolam. Y-24180 inhibited PAF-induced rabbit platelet aggregation in vitro (IC50 3.84 nM), but had little effect on adenosine diphosphate- or arachidonic acid-induced aggregation. WEB 2086 and etizolam also showed an inhibitory effect of PAF-induced aggregation (IC50 values are 456 and 6730 nM, respectively). In PAF-induced human platelet aggregation, Y-24180 (IC50 0.84 nM) was more potent than WEB 2086 (IC50 4.21 nM) and etizolam (IC50 998 nM). Y-24180, WEB 2086 and etizolam displaced 3H-PAF binding from the washed-platelets of rabbits with an IC50 value of 3.50, 9.35 and 29.5 nM, respective- ly. In rabbits, pretreatment with Y-24180 and WEB 2086 antagonized PAF-induced platelet aggregation dose-dependently. The significant inhibitory effect of Y-24180(1 mg/kg, p.o.) lasted 72 hr after a single dose oral administration. WEB 2086 (10 mg/kg, p.o.) also antagonized the ex vivo response induced by PAF 1 hr after administration, but no significant effect was observed 3 hr after administration. Y-24180 displaced 3H-diazepam binding from the synaptosomal membranes of rat cerebral cortex with a Ki value of 3.68 μ M. The affinity of Y-24180 for benzodiazepine(BZP) receptors was lower than those of WEB 2086 and etizolam and was about 1000 times lower than that for PAF receptors in platelets.  相似文献   

10.
The affinity of amitriptyline for muscarinic receptors in rat brain areas was studied using autoradiographic techniques including image analysis. As shown by competitive inhibition of [3H]-l-quinuclidinyl benzilate binding, amitriptyline was found to be a potent inhibitor of muscarinic receptors throughout the rat brain. Muscarinic receptors in the external layers of the cortex displayed a high affinity for amitriptyline (IC50 = 65.8 ± 2.1 nM), while the hippocampal regions had somewhat lower affinities (e.g. IC50 = 96.3 ± 3.4 nM). Amitriptyline bound with lower affinity in the thalamus and various midbrain regions, such as the paraventricular nucleus of the thalamus and the superior colliculus, which had IC50 values of 112 ± 6.8 and 117 ± 32.6 nM, respectively. Other midbrain regions displayed higher affinities, for example, the substantia nigra had an IC50 value of 62.8 ± 0.9 nM. The data show that amitriptyline binds with high affinity to muscarinic receptors with a modest subtype selectivity that is unlike that of either pirenzepine or AF-DX 116. In addition, amitriptyline at concentrations of 10 nM-1 μM antagonized the oxotremorine-induced inhibition of acetylcholine release in cortical nerve endings, demonstrating activity at M2 autoreceptors.  相似文献   

11.
Two series of N6-substituted adenosines with monocyclic and bicyclic N6 substituents containing a heteroatom were synthesized in good yields. These derivatives were assessed for their affinity ([3H]CPX), potency, and intrinsic activity (cAMP accumulation) at the A1 adenosine receptor in DDT1 MF-2 cells. In the monocyclic series, the N6-tetrahydrofuran-3-yl and thiolan-3-yl adenosines (1 and 26, respectively) were found to possess similar activities, whereas the corresponding selenium analogue 27 was found to be more potent. A series of nitrogen containing analogues showed varying properties, N6-((3R)-1-benzyloxycarbonylpyrrolidin-3-yl)adenosine (30) was the most potent at the A1AR; IC50 = 3.2 nM. In the bicyclic series, the effect of a 7-azabicyclo[2.2.1]heptan-2-yl substituent in the N6-position was explored. N6-(7-Azabicyclo[2.2.1]heptan-2-yl)adenosine (38) proved to be a reasonably potent A1 agonist (Ki = 51 nM, IC50 = 35 nM) while further substitution on the 7″-nitrogen with tert-butoxycarbonyl (31, IC50 = 2.5 nM) and 2-bromobenzyloxycarbonyl (34, IC50 = 9.0 nM) gave highly potent A1AR agonists.  相似文献   

12.
In contrast to aromatase inhibitors, which are now in clinical use, the development of steroid sulphatase (STS) inhibitors for breast cancer therapy is still at an early stage. STS regulates the formation of oestrone from oestrone sulphate (E1S) but also controls the hydrolysis of dehydroepiandrosterone sulphate (DHEA-S). DHEA can be reduced to 5-androstenediol (Adiol), a steroid with potent oestrogenic properties. The active pharmacophore for potent STS inhibitors has now been identified, i.e. a sulphamate ester group linked to an aryl ring. This has led to the development of a number of STS inhibitors, some of which are due to enter Phase I trials in the near future. Such first generation inhibitors include the tricyclic coumarin-based 667 COUMATE. Aryl sulphamates, such as 667 COUMATE, are taken up by red blood cells (rbc), binding to carbonic anhydrase II (CA II), and transit the liver without undergoing first-pass inactivation. 667 COUMATE is also a potent inhibitor of CA II activity with an IC50 of 17 nM. Second generation STS inhibitors, such as 2-methoxyoestradiol bis-sulphamate (2-MeOE2bisMATE), in addition to inhibiting STS activity, also inhibit the growth of oestrogen receptor negative (ER) tumours in mice and are anti-angiogenic. As the active pharmacaphores for the inhibition of aromatase and STS are now known it may be possible to develop third generation inhibitors that are capable of inhibiting the activities of both enzymes. Whilst exploring the potential of such a strategy it was discovered that 667 COUMATE possessed weak aromatase inhibitory properties with an IC50 of 300 nM in JEG-3 cells. The identification of potent STS inhibitors will allow the therapeutic potential of this new class of drug to be explored in post-menopausal women with hormone-dependent breast cancer. Second generation inhibitors, such as 2-MeOE2bisMATE, which also inhibit the growth of ER tumours should be active against a wide range of cancers.  相似文献   

13.
A pair of -cyano analogues of decarboxylated S-adenosylmethionine (2a and 2b) were synthesized as potential enzyme activated, irreversible inhibitors of the[pyruvoyl enzyme S-adenosylmethionine decarboxylase (AdoMet-DC). Each of these analogues acts as an irreversible inactivator for ADoMet-DC from Escherichia coli (IC50 values of 9 and 50 μM, respectively). These analogues also inactivate human AdoMet-DC, with KI values of 246.6 and 7.2 μM, and kinact values of 0.29 and 0.03 min−1, respectively.  相似文献   

14.
The influence of lipid peroxidation on 5-HT2 receptor binding was examined in prefrontal cortex membranes from sheep brain. Lipid peroxidation was induced with ascorbic acid and ferrous sulphate and measured by the thiobarbituric acid method. In lipid-peroxidized membranes, [3H]ketanserin specific binding was inhibited. The Bmax values decreased by 80%, from 50.1±3.5 fmol/mg protein in control membranes to 10.1±2.0 fmol/mg protein in peroxidized membranes, indicating a decrease in the number of 5-HT2 binding sites. However, the KD values for the [3H]ketanserin specific binding did not significantly change. In order to further characterize [3H]ketanserin binding, the inhibition potency (IC50 values) of antagonists or agonists of serotonin and dopamine receptors for [3H]ketanserin specific binding was determined. In control membranes, the order of the inhibition potency of the drugs tested was the following: ketanserin (−log [IC50] = 8.56±0.70) ritanserin (−log [IC50] = 8.13±0.30) methysergide (−log [IC50] = 7.42±0.50) spiperone (−log [IC50] = 7.23±0.18) serotonin (−log [IC50] = 6.99±0.65) haloperidol (−log [IC50] = 6.95±0.65) dopamine (−log [IC50] = 5.82±0.76). After membrane lipid peroxidation, the IC50 value for ritanserin was significantly increased, suggesting a decreased capacity for displacing [3H]ketanserin specific binding. Other antagonists of 5-HT2 receptors showed apparent increases in IC50 values upon peroxidation, whereas spiperone was shown to be the most potent drug (−log [IC50] = 7.19±1.06) in inhibiting [3H]ketanserin specific binding. A decrease in polyunsaturated fatty acids, namely docosahexaenoic acid (22:6) was also observed in peroxidized membranes. These results indicate a modulating role of the surrounding lipids and of the physical properties of the membranes on the binding activity of 5-HT2 receptors upon the lipid peroxidation process, which can be involved in the tissue impairment that occurs during the aging process and in post-ischemic situations.  相似文献   

15.
In a search for novel analogues of β3-adrenoceptor (AR) agonists relaxing the bladder for treatment of urinary dysfunction, 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}ethyl)phenoxy]-2-methylpropionic acids (1a–e), into which a fibrate-like structure had been incorporated, were synthesised. Compound 1a was found to be a selective β3-AR agonist in functional assays using the ferret detrusor (β3-AR), rat uterus (β2-AR), and rat atrium (β1-AR); β3: EC50=7.8 nM, β2: IC50=7,300 nM, β1: EC20=23,000 nM. The introduction of a chlorine atom or methyl substituent at the ortho-position on the phenyl ring of 1a further improved β3-AR selectivity. In an in vivo study, 1a lowered intrabladder pressure (ED50=31 μg/kg) in rats, without increasing heart rate, in keeping with the in vitro results. Consequently, it is proposed that 1a and its analogues (1b–e), possess β3-AR agonistic activity in the absence of undesirable β1- or β2-AR mediated actions, and may be useful for clinical treatment and pharmacological studies.  相似文献   

16.
The lichen secondary metabolite usnic acid exists as a (−) and a (+) enantiomer, indicating a or β projection of the methyl group at position 9b, respectively. (−)-Usnic caused a dose-dependent bleaching of the cotyledonary tissues associated with a decrease of both chlorophylls and carotenoids in treated plants whereas no bleaching was observed with the (+) enantiomer. (−)-Usnic acid inhibited protophorphyrinogen oxidase activity (I50=3 μM), but did not lead to protoporphyrin IX accumulation. Bleaching appears to be caused by irreversible inhibition of the enzyme 4-hydroxyphenylpyruvate dioxygenase by (−)-usnic acid (apparent IC50=50 nM).  相似文献   

17.
Chalcones xanthohumol (X) and desmethylxanthohumol (DMX), present in hops (Humulus lupulus L.), and the corresponding flavanones isoxanthohumol (IX, from X), 8-prenylnaringenin (8-PN, from DMX), and 6-prenylnaringenin (6-PN, from DMX), have been examined in vitro for their anti-proliferative activity on human prostate cancer cells PC-3 and DU145. X proved to be the most active compound in inhibiting the growth of the cell lines with IC50 values of 12.3±1.1 μM for DU145 and 13.2±1.1 μM for PC-3. 6-PN was the second most active growth inhibitor, particularly in PC-3 cells (IC50 of 18.4±1.2 μM). 8-PN, a highly potent phytoestrogen, exhibited pronounced anti-proliferative effects on PC-3 and DU145 (IC50 of 33.5±1.0 and 43.1±1.2 μM, respectively), and IX gave comparable activities (IC50 of 45.2±1.1 μM for PC-3 and 47.4±1.1 μM for DU145). DMX was the least active compound. It was evidenced for the first time that this family of prenylated flavonoids from hops effectively inhibits proliferation of prostate cancer cells in vitro.  相似文献   

18.
Steroid sulfatase (STS) catalyzes the hydrolysis of steroidal sulfates such as estrone sulfate (ES1) to the corresponding steroids and inorganic sulfate. STS is considered to be a potential target for the development of therapeutics for the treatment of steroid-dependent cancers. Two steroidal and two coumarin- and chromenone-based boronic acids were synthesized and examined as inhibitors of purified STS. The boronic acid analog of estrone sulfate bearing a boronic acid moiety at the 3-position in place of the sulfate group was a good competitive STS inhibitor with a Ki of 2.8 μM at pH 7.0 and 6.8 μM at pH 8.8. The inhibition was reversible and kinetic properties corresponding to the mechanism for slow-binding inhibitors were not observed. An estradiol derivative bearing a boronic acid group at the 3-position and a benzyl group at the 17-position was a potent reversible, non-competitive STS inhibitor with a Ki of 250 nM. However, its 3-OH analog, a known STS inhibitor, exhibited an almost identical affinity for STS and also bound in a non-competitive manner. It is suggested that these compounds prefer to bind in a hydrophobic tunnel close to the entrance to the active site. The coumarin and chromenone boronic acids were modest inhibitors of STS with IC50s of 86 and 171 μM, respectively. Surprisingly, replacing the boronic acid group of the chromenone derivative with an OH group yielded a good reversible, mixed type inhibitor with a Ki of 4.6 μM. Overall, these results suggest that the boronic acid moiety must be attached to a platform very closely resembling a natural substrate in order for it to impart a beneficial effect on binding affinity compared to its phenolic analog.  相似文献   

19.
Several substances with different inhibitory effects on adrenal steroid biosynthesis were investigated in patients with Cushing's syndrome. It has been shown that trilostane, a 3β-hydroxysteroid-dehydrogenase inhibitor, is not potent enough to block cortisol biosynthesis in patients with hypercortisolism. Aminoglutethimide inhibits side chain cleavage of cortisol synthesis, but it has been demonstrated that the blocking effect on cortisol secretion is not strong enough to normalize urinary cortisol excretion in patients with Cushing's disease. For metyrapone, an inhibitor of adrenal 11β-hydroxylase, promising results were reported for the treatment of Cushing's syndrome. However, the drug has several side effects and depending on the definition of the desired reduction of cortisol secretion a true remission was only found in a minority of patients. The antifungal drug ketoconazole in vitro predominantly blocks 17,20-desmolase (IC50 1 μM) and to a lesser extent 17-hydroxylase (IC50 10 μM) and 11β-hydroxylase (IC50 15–40 μM). Therefore, ketoconazole in vivo most potently suppresses androgen secretion and only to a lesser extent cortisol biosynthesis. Several therapeutic trials with ketoconazole treatment in patients with pituitary Cushing's disease showed various remission rates between 30 and 90%. In contrast, in almost all patients with benign, primary adrenal Cushing's syndrome cortisol levels were normalized. In patients with ectopic ACTH syndrome ketoconazole was effective in about 50% of all reported cases, while cortisol hypersecretion due to adrenocortical carcinoma was only rarely inhibited by ketoconazole. The main side effect of ketoconazole treatment was liver toxicity which occurred in 12% of all treated patients. In contrast to ketoconazole, the narcotic drug etomidate shows a strong inhibitory effect on 11β-hydroxylase (IC50 0.03–0.15 μM) but only a weak inhibition of 17,20 desmolase (IC50 380 μM). This correlates with in vivo studies where even low, non-hypnotic doses of etomidate induced a pronounced fall in serum cortisol levels in normals and in patients with Cushing's syndrome. However, its clinical use is limited by its mandatory intravenous application and its sedative effects. In conclusion, ketoconazole remains the only available steroid-inhibitory drug for a therapeutic trial in patients with Cushing's syndrome who cannot be treated definitively by surgery.  相似文献   

20.
Calophyllum brasiliense, Lonchocarpus oaxacensis, and Lonchocarpus guatemalensis are used in Latin American folk medicine. Four natural xanthones, an acetylated derivative, and two coumarins were obtained from C. brasiliense. Two flavanones were extracted from L. oaxacensis and one chalcone from L. guatemalensis. These compounds were tested as substrates and inhibitors for two recombinant sulfotransferases (SULTs) involved in the metabolism of many endogenous compounds and foreign chemicals. Assays were performed using recombinant phenol-sulfotransferase (SULT1A1) and hydroxysteroidsulfotransferase (SULT2A1). Three of the five xanthones, one of the flavonoids and the coumarins tested were substrates for SULT1A1. None of the xanthones or the flavonoids were sulfonated by SULT2A1, whereas the coumarin mammea A/BA was a substrate for this enzyme. The natural xanthones reversibly inhibited SULT1A1 with IC50 values ranging from 1.6 to 7 μM whereas much higher amounts of these compounds were required to inhibit SULT2A1 (IC50 values of 26-204 μM). The flavonoids inhibited SULT1A1 with IC50 values ranging from 9.5 to 101 μM, which compared with amounts needed to inhibit SULT2A1 (IC50 values of 11 to 101 μM). Both coumarins inhibited SULT1A1 with IC50 values of 47 and 185 μM, and SULT2A1 with IC50 values of 16 and 31 μM. The acetylated xanthone did not inhibit either SULT1A1 or SULT2A1 activity. Rotenone from a commercial source had potency comparable to that of the flavonoids isolated from Lonchocarpus for inhibiting both SULTs. The potency of this inhibition depends on the position and number of hydroxyls. The results indicate that SULT1A1, but not SULT2A1, is highly sensitive to inhibition by xanthones. Conversely, SULT2A1 is 3-6 times more sensitive to coumarins than SULT1A1. The flavonoids are non-specific inhibitors of the two SULTs.

Collectively, the results suggest that these types of natural products have the potential for important pharmacological and toxicological interactions at the level of phase-II metabolism via sulfotransferases.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号