共查询到20条相似文献,搜索用时 9 毫秒
1.
In this study, production of S-adenosyl-L-methionine in Corynebacterium glutamicum was investigated by overexpressing genes metK and vgb. Compared with vector control, overexpression of metK alone in C. glutamicum ATCC13032 and IWJ001 increased SAM production 5.11 and 11.65 times, respectively; while overexpression of metK and vgb in C. glutamicum ATCC13032 and IWJ001 increased SAM production 5.83 and 14.95 times, respectively. Further studies on IWJ001/pDXW-8-metk-vgb showed that the limiting factor for SAM production is intracellular ATP supply. Since IWJ001 is an L-isoleucine production strain, IWJ001/pDXW-8-metk-vgb could produce both SAM and L-isoleucine. After 72 h fermentation, SAM and L-isoleucine in IWJ001/pDXW-8-metk-vgb reached 0.67 g/L and 13.8 g/L, respectively. The results demonstrate the potential application of C. glutamicum for co-production of SAM and amino acids. 相似文献
2.
Lianghong Yin Jianxun Zhao Cheng Chen Xiaoqing Hu Xiaoyuan Wang 《Biotechnology and Bioprocess Engineering》2014,19(1):132-142
Our previous work has shown that L-isoleucine production in Corynebacterium glutamicum IWJ001 could be increased by overexpressing ilvA1 encoding a feedback-resistant threonine dehydratase, ilvBN1 encoding a feedback-resistant acetohydroxy acid synthase, lrp encoding the global regulator Lrp, brnFE encoding the two-component export system BrnFE, or ppnk1 encoding NAD kinase. The main purpose of this study is to further increase the L-isoleucine production in C. glutamicum IWJ001 by overexpressing the above genes in various combinations. Several C. glutamicum strains IWJ001/pDXW-8-ppnk1-lrp-brnFE, IWJ001/pDXW-8-ilvBN1-ilvA1-lrp-brnFE, IWJ001/pDXW-8-ilvBN1-ilvA1-ppnk1, and IWJ001/pDXW-8-ppnk1-ilvBN1-ilvA1-lrp-brnFE were constructed, and L-isoleucine production and activities of several key enzymes in these strains were analyzed. Compared with the control strain IWJ001/pDXW-8, L-isoleucine production increased in all of the four strains. IWJ001/pDXW-8-ilvBN1-ilvA1-ppnk1 showed the highest L-isoleucine production and produced 32.3 g/L L-isoleucine in 72 h fed batch fermentation. The results indicate that L-isoleucine production in C. glutamicum could be increased by enhancing the carbon flux and NADPH supply in the biosynthetic pathway. 相似文献
3.
NAD激酶催化辅酶Ⅰ[NAD(H)]发生磷酸化,转变成辅酶Ⅱ[NADP(H)],而还原态辅酶Ⅱ(NADPH)是L-异亮氨酸合成的必要辅因子。为了提高NADPH的供应,首先克隆了谷氨酸棒杆菌NAD激酶基因ppnK,并利用大肠杆菌-棒状杆菌诱导型穿梭表达载体pDXW-8和组成型穿梭表达载体pDXW-9在L-异亮氨酸合成菌——乳糖发酵短杆菌JHI3-156中进行表达。摇瓶发酵后,ppnK诱导表达菌JHI3-156/pDXW-8-ppnK的NAD激酶酶活(4.33±0.74 U/g)比pDXW-8空载菌提高了83.5%,辅酶Ⅱ与辅酶Ⅰ的比例提高了63.8%,L-异亮氨酸产量(3.86±0.12 g/L)提高了82.9%;ppnK组成表达菌JHI3-156/pDXW-9-ppnK的NAD激酶酶活(7.67±0.65 U/g)比pDXW-9空载菌提高了2.20倍,辅酶Ⅱ与辅酶Ⅰ的比例提高了1.34倍,NADPH含量提高了21.7%,L-异亮氨酸产量(2.99±0.18 g/L)提高了41.7%。这说明NAD激酶有助于辅酶Ⅱ的供应和L-异亮氨酸的生物合成,这对于其他氨基酸的生产也有一定的参考依据。 相似文献
4.
为了提高L-异亮氨酸生产菌株Corynebacterium glutamicum LD320的产酸水平,通过改善其分泌系统,在C. glutamicum LD320中分别过表达突变型和野生型的双组份转运系统BrnFE操纵子,构建了重组菌LD320/pXMJ19-brnFE和LD320/pXMJ19-brnFE1。通过对两株重组菌的L-异亮氨酸生产分析比较,发现突变型比野生型能更有效地提高 L-异亮氨酸产量。同时对 LD320/pXMJ19-brnFE1进行表面活性剂添加实验,发现Tween-80为最佳选择,其最佳添加量为0.5 g/L,最佳添加时间为对数期的16 h。最后通过7 L发酵罐放大实验,LD320/pXMJ19-brnFE1的L-异亮氨酸产量由18.53 g/L提高到25.45 g/L,比对照组提高了37%。 相似文献
5.
A glutamic acid producing microorganism (Corynebacterium glutamicum) is entrapped in a polyacrylamide gel. These immobilized microorganisms were used to produce glutamic acid in successive batches of fresh medium. Free microorganisms similarly used produced much less glutamic acid under similar conditions. 相似文献
6.
Stefan Wieschalka Bastian Blombach Michael Bott Bernhard J Eikmanns 《Microbial biotechnology》2013,6(2):87-102
The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. 相似文献
7.
Mimitsuka T Sawai H Hatsu M Yamada K 《Bioscience, biotechnology, and biochemistry》2007,71(9):2130-2135
Cadaverine, the expected raw material of polyamides, is produced by decarboxylation of L-lysine. If we could produce cadaverine from the cheapest sugar, and as a renewable resource, it would be an effective solution against global warming, but there has been no attempt to produce cadaverine from glucose by fermentation. We focused on Corynebacterium glutamicum, whose L-lysine fermentation ability is superior, and constructed a metabolically engineered C. glutamicum in which the L-homoserine dehydrogenase gene (hom) was replaced by the L-lysine decarboxylase gene (cadA) of Escherichia coli. In this recombinant strain, cadaverine was produced at a concentration of 2.6 g/l, equivalent to up to 9.1% (molecular yield) of the glucose transformed into cadaverine in neutralizing cultivation. This is the first report of cadaverine fermentation by C. glutamicum. 相似文献
8.
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum 总被引:1,自引:0,他引:1
Blombach B Schreiner ME Holátko J Bartek T Oldiges M Eikmanns BJ 《Applied and environmental microbiology》2007,73(7):2079-2084
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. 相似文献
9.
Here, we report the engineering of the industrially relevant Corynebacterium glutamicum for putrescine production. C. glutamicum grew well in the presence of up to 500 mM of putrescine. A reduction of the growth rate by 34% and of biomass formation by
39% was observed at 750 mM of putrescine. C. glutamicum was enabled to produce putrescine by heterologous expression of genes encoding enzymes of the arginine- and ornithine decarboxylase
pathways from Escherichia coli. The results showed that the putrescine yield by recombinant C. glutamicum strains provided with the arginine-decarboxylase pathway was 40 times lower than the yield by strains provided with the ornithine
decarboxylase pathway. The highest production efficiency was reached by overexpression of speC, encoding the ornithine decarboxylase from E. coli, in combination with chromosomal deletion of genes encoding the arginine repressor ArgR and the ornithine carbamoyltransferase
ArgF. In shake-flask batch cultures this strain produced putrescine up to 6 g/L with a space time yield of 0.1 g/L/h. The
overall product yield was about 24 mol% (0.12 g/g of glucose). 相似文献
10.
Kevin Michael Smith Kwang-Myung Cho James C. Liao 《Applied microbiology and biotechnology》2010,87(3):1045-1055
The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways.
Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that
C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols
such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term
batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production
by ∼25% to 4.9 g/L isobutanol in a ∆pyc∆ldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways. 相似文献
11.
NADPH is the key cofactor in L-isoleucine (Ile) biosynthetic pathway. To increase the Ile biosynthesis in Corynebacterium glutamicum ssp. lactofermentum JHI3-156, NADPH supply needs to be enhanced. Here NAD kinase, the key enzyme for the de novo biosynthesis of NADP(+) and NADPH, were cloned and expressed in JHI3-156, and their influences on Ile production were analysed. Meanwhile, enzyme properties of NAD kinase from JHI3-156 (CljPpnK) were compared with that from C. glutamicum ssp. lactofermentum ATCC 13869 (ClPpnK). Four variations existed between CljPpnK and ClPpnK. Both PpnKs were poly(P)/ATP-dependent NAD kinases that used ATP as the preferred phosphoryl donor and NAD(+) as the preferred acceptor. CljPpnK exhibited a higher activity and stability than ClPpnK and less sensitivity towards the effectors NADPH, NADP(+), and NADH, partly due to the variations between them. The S57P variation decreased their activity. Expression of CljppnK and ClppnK in JHI3-156 increased the ATP-NAD(+) kinase activity by 69- and 47-fold, respectively, the intracellular NADP(+) concentration by 36% and 101%, respectively, the NADPH concentration by 95% and 42%, respectively, and Ile production by 37% and 24%, respectively. These results suggest that overexpressing NAD kinase is a useful metabolic engineering strategy to improve NADPH supply and isoleucine biosynthesis. 相似文献
12.
13.
Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family 下载免费PDF全文
Kennerknecht N Sahm H Yen MR Pátek M Saier Jr MH Eggeling L 《Journal of bacteriology》2002,184(14):3947-3956
Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes L-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for L-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports L-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of L-leucine and L-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in alpha-proteobacteria but not in other prokaryotes analyzed. 相似文献
14.
Marius Conrady Anja Lemoine Michael H. Limberg Marco Oldiges Peter Neubauer Stefan Junne 《Biotechnology progress》2019,35(3):e2804
Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l -lactate, on the cultivation of the cadaverine producing strain C. glutamicum DM1945Δact3:Ptuf-ldcCopt and their potential role in scale up related performance losses. A fluctuating power input in shake flask and stirred tank cultivations with mineral salt was applied to mimic discontinuous oxygen availability. Results demonstrate, whenever sufficient oxygen was available, C. glutamicum recovered from previously occurring stressful conditions like an oxygen limiting phase. Reassimilation of acids was detected simultaneously. In cultures, which were supplemented with either acetate or l -lactate, a rapid cometabolization of both acids in presence of glucose was observed, showing conversion rates of 7.8 and 3.8 mmol gcell dry weight−1 hr−1, respectively. Uptake of these acids was accompanied by increased oxygen consumption. Proteins related to oxidative stress response, glycogen synthesis, and the main carbon metabolism were found in altered concentrations under oscillatory cultivation conditions. (Proteomics data are available via ProteomeXchange with identifier PXD012760). Virtually no impact on growth or product formation was observed. We conclude that the reduced growth and product formation in scale-down cultivations when complex media was used is not caused by the accumulation of carboxylic acids. 相似文献
15.
Blombach B Riester T Wieschalka S Ziert C Youn JW Wendisch VF Eikmanns BJ 《Applied and environmental microbiology》2011,77(10):3300-3310
We recently engineered Corynebacterium glutamicum for aerobic production of 2-ketoisovalerate by inactivation of the pyruvate dehydrogenase complex, pyruvate:quinone oxidoreductase, transaminase B, and additional overexpression of the ilvBNCD genes, encoding acetohydroxyacid synthase, acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. Based on this strain, we engineered C. glutamicum for the production of isobutanol from glucose under oxygen deprivation conditions by inactivation of l-lactate and malate dehydrogenases, implementation of ketoacid decarboxylase from Lactococcus lactis, alcohol dehydrogenase 2 (ADH2) from Saccharomyces cerevisiae, and expression of the pntAB transhydrogenase genes from Escherichia coli. The resulting strain produced isobutanol with a substrate-specific yield (YP/S) of 0.60 ± 0.02 mol per mol of glucose. Interestingly, a chromosomally encoded alcohol dehydrogenase rather than the plasmid-encoded ADH2 from S. cerevisiae was involved in isobutanol formation with C. glutamicum, and overexpression of the corresponding adhA gene increased the YP/S to 0.77 ± 0.01 mol of isobutanol per mol of glucose. Inactivation of the malic enzyme significantly reduced the YP/S, indicating that the metabolic cycle consisting of pyruvate and/or phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme is responsible for the conversion of NADH+H+ to NADPH+H+. In fed-batch fermentations with an aerobic growth phase and an oxygen-depleted production phase, the most promising strain, C. glutamicum ΔaceE Δpqo ΔilvE ΔldhA Δmdh(pJC4ilvBNCD-pntAB)(pBB1kivd-adhA), produced about 175 mM isobutanol, with a volumetric productivity of 4.4 mM h−1, and showed an overall YP/S of about 0.48 mol per mol of glucose in the production phase. 相似文献
16.
Liu Wei Zhu Xiangcheng Lian Jiazhang Huang Lei Xu Zhinan 《Journal of industrial microbiology & biotechnology》2019,46(12):1685-1695
Journal of Industrial Microbiology & Biotechnology - Glutathione is a bioactive tripeptide composed of glycine, l-cysteine, and l-glutamate, and has been widely used in pharmaceutical, food,... 相似文献
17.
Hiroshi Hagino Hajime Yoshida Fumio Kato Yuko Arai Ryoichi Katsumata Kiyoshi Nakayama 《Bioscience, biotechnology, and biochemistry》2013,77(9):2001-2005
Polyauxotrophic mutants of Corynebacterium glutamicum which have additional requirements to L-phenylalanine were derived from L-tyrosine producing strains of phenylalanine auxotrophs, C. glutamicum KY 9189 and C. glutamicum KY 10233, and screened for L-tyrosine production. The increase of L-tyrosine production was noted in many auxotrophic mutants derived from both strains. Especially some double auxotrophs which require phenylalanine and purine, phenylalanine and histidine, or phenylalanine and cysteine produced significantly higher amounts of L-tyrosine compared to the parents, A phenylalanine and purine double auxotrophic strain LM–96 produced L-tyrosine at a concentration of 15.1 mg per ml in the medium containing 20% sucrose. L-Tyrosine production by the strain decreased at high concentrations of L-phenylalanine. 相似文献
18.
The dynamic behavior of the metabolism of Corynebacterium glutamicum during L-glutamic acid fermentation, was evaluated by quantitative analysis of the evolution of intracellular metabolites and key enzyme concentrations. Glutamate production was induced by an increase of the temperature and a final concentration of 80 g/l was attained. During the production phase, various other compounds, notably lactate, trehalose, and DHA were secreted to the medium. Intracellular metabolites analysis showed important variations of glycolytic intermediates and NADH, NAD coenzymes levels throughout the production phase. Two phenomena occur during the production phase which potentially provoke a decrease in the glutamate yield: Both the intracellular concentrations of glycolytic intermediates and the NADH/NAD ratio increase significantly during the period in which the overall metabolic rates decline. This correlates with the decrease in glutamate yield due in part to the production of lactate and also to the period of the fermentation in which growth no longer occurred. 相似文献
19.
Peters-Wendisch P Stolz M Etterich H Kennerknecht N Sahm H Eggeling L 《Applied and environmental microbiology》2005,71(11):7139-7144
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism. 相似文献
20.
The production of L-glutamic acid with Corynebacterium glutamicum under biotin limitation was studied. Assuming a formal type of cell maturation, an adequate formal kinetic model was developed. This model includes growth, dependent on biotin, and uses the same retention term for describing the lag phase and cell maturation. Special attention was paid to the graphical interpretation of the performance between the variables, which is relevant for kinetics. Comparison between experiments and the model resulted in different degrees of agreement. However, the main trend of the experimental patterns of the complex bioprocess can clearly be mirrored in this model. 相似文献