首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the process of population screening for apo E gene polymorphism with the PCR and subsequent restriction analysis, we identified a female who demonstrated heterozygosity for an unusual restriction fragment caused by the loss of a CfoI restriction site. Sequence analysis of the apo E gene was performed and a carrier of the mutant allele with C --> T substitution at cDNA position 3817 was identified, which caused an Arg136 --> Cys change. The first-line relatives have been screened for this rare mutation with PCR and restriction analysis of PCR products. The complete lipoprotein parameters have been determined in the probands family. In the family, only one child had the same mutant allele as his mother had. The proband (7.49 mmol/l) with her siblings had hypercholesterolemia and a high body mass index (BMI 31.6 kg/m2). By contrast, her son had a normal lipid spectrum with normal BMI. We described the mutation apo E2* (Arg136 --> Cys) in a family with elevated lipid levels, but there was no confirmation of the connection between this mutation and type III hyperlipoproteinemia or hyperlipoproteinemia at all. In the case of this mutation, other factors (mainly genetic) are important for the development of lipid metabolism disorders.  相似文献   

2.
Through the analysis of the common apolipoprotein (apo) E gene polymorphism in large Caucasian population study with the PCR and subsequent restriction analysis, we have identified carriers of mutant allele Arg136-->Ser. Both of them (71-years-old female and her 43-years-old son) have normal lipid parameters. We suggest that Arg136-->Ser mutation in apoE is not necessarily connected with elevated lipid levels in all cases. Furthermore, so far unidentified factors (environmental and/or genetic) are important for the development of lipid metabolism disorders in apoE Arg136-->Ser mutation carriers.  相似文献   

3.
Apolipoprotein E (apoE) is a polymorphic protein which occurs in three common isoforms and more than 25 rare variants. Some of the rare apoE variants have been implicated in a dominant mode of inheritance of familial dysbetalipoproteinemia (FD). We have identified three unrelated apoE 2*(Arg136-->Cys) carriers with FD. This finding supports the notion that although apoE 2*(Arg136-->Cys) mutation is perhaps not sufficient to cause FD itself, the presence of other genetic and/or environmental factors can lead to the phenotypic expression of the disease in the carriers.  相似文献   

4.
M Zhao  K C Zen  W L Hubbell  H R Kaback 《Biochemistry》1999,38(23):7407-7412
Evidence has been presented [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] that Glu126 (helix IV) and Arg144 (helix V) which are critical for substrate binding in the lactose permease of Escherichia coli are charge paired and therefore in close proximity. To test this conclusion more directly, three different site-directed spectroscopic techniques were applied to permease mutants in which Glu126 and/or Arg144 were replaced with either His or Cys residues. (1) Glu126-->His/Arg144-->His permease containing a biotin acceptor domain was purified by monomeric avidin affinity chromatography, and Mn(II) binding was assessed by electron paramagnetic resonance spectroscopy. The mutant protein binds Mn(II) with a KD of about 40 microM at pH 7.5, while no binding is observed at pH 5.5. In addition, no binding is detected with Glu126-->His or Arg144-->His permease. (2) Permease with Glu126-->Cys/Arg144-->Cys and a biotin acceptor domain was purified, labeled with a thiol-specific nitroxide spin-label, and shown to exhibit spin-spin interactions in the frozen state after reconstitution into proteoliposomes. (3) Glu126-->Cys/Arg144-->Cys permease with a biotin acceptor domain was purified and labeled with a thiol-specific pyrene derivative, and fluorescence spectra were obtained after reconstitution into lipid bilayers. An excimer band is observed with the reconstituted E126C/R144C mutant, but not with either single-Cys mutant or when the single-Cys mutants are mixed prior to reconstitution. The results provide strong support for the conclusion that Glu126 (helix IV) and Arg144 (helix V) are in close physical proximity.  相似文献   

5.
Apolipoprotein E (apoE, protein; APOE, gene) is important in lipoprotein metabolism. Three isoforms, apoE2 (Cys112 Cys158), apoE3 (Cys112 Arg158), and apoE4 (Arg112 Arg158), are present in the general population. This report investigates the frequency distribution of apoE isoforms and the association of APOE genotypes with plasma lipid profile and coronary heart disease (CHD) in a population of Taiwan. ApoE isoforms were determined genetically by polymerase chain reaction and HhaI restriction enzyme digestion in control and coronary heart disease (CHD) patients. Plasma lipid and lipoprotein concentrations were also determined. The control group exhibited frequencies of 84.6% APOE3, 7.9% APOE4, 7.5% APOE2, 70.6% APOE3E3, 14.4% APOE3E4, 13.6% APOE2E3, and 1.4% APOE2E4. Comparable frequencies were observed in the CHD group. In both APOE2 carrier and APOE3E3 groups, the CHD patients expressed abnormal lipid profiles while the control group expressed normal lipid profiles. The APOE4 carriers, however, expressed abnormal lipid profiles in both normal control and CHD groups. Extremely high apoE levels in the hypertriglyceridemic group (TG > 400 mg/dL) seemed to be undesirable and were often observed in CHD patients.  相似文献   

6.
Type III hyperlipoproteinemia typically is associated with homozygosity for apolipoprotein (apo) E2(Arg158----Cys). Dominant expression of type III hyperlipoproteinemia associated with apoE phenotype E3/3 is caused by heterozygosity for a human apoE variant, apoE3(Cys112----Arg, Arg142----Cys). However, this apoE3 variant was not separable from the normal apoE3 in these patients' plasma because the two proteins have identical amino acid composition, charge, and molecular weight. Therefore, to determine the functional characteristics of this protein, we used recombinant DNA techniques to produce this apoE variant in bacteria. We also produced a non-naturally occurring variant, apoE(Arg142----Cys), that had only the cysteine substituted at residue 142. These two apoE variants were purified from cell lysates of the transfected Escherichia coli by ultracentrifugal flotation in the presence of phospholipid, by gel filtration chromatography, and by heparin-Sepharose chromatography. Both Cys142 apoE variants bound to lipoprotein receptors on human fibroblasts with only about 20% of normal binding activity. Therefore, cysteine at residue 142, not arginine at residue 112, is responsible for the decreased receptor binding activity of the variants. Cysteamine treatment and removal of the carboxyl-terminal domain had little effect on the binding activity, whereas both modulate the receptor binding activity of apoE2(Arg158----Cys). The mutation at residue 142 decreased the binding activity of apoE to both heparin and the monoclonal antibody 1D7 (this antibody inhibits receptor binding of apoE), whereas apoE2(Arg158----Cys), which is associated with recessive expression of type III hyperlipoproteinemia, binds normally to both. The Arg112, Cys142 variant predominantes 3:1 over normal apoE3 in the very low density lipoproteins of plasma from an affected subject, as assessed by differential reactivity with the antibody 1D7. The unique combination of functional properties of the Arg112, Cys142 variant provides a possible explanation for its association with dominant expression of type III hyperlipoproteinemia.  相似文献   

7.
Brokx SJ  Talbot J  Georges F  Waygood EB 《Biochemistry》2000,39(13):3624-3635
Enzyme I mutants of the Salmonella typhimurium phosphoenolpyruvate:sugar phosphotransferase system (PTS), which show in vitro intragenic complementation, have been identified as Arg126Cys (strain SB1690 ptsI34), Gly356Ser (strain SB1681 ptsI16), and Arg375Cys (strain SB1476 ptsI17). The mutation Arg126Cys is in the N-terminal HPr-binding domain, and complements Gly356Ser and Arg375Cys enzyme I mutations located in the C-terminal phosphoenolpyruvate(PEP)-binding domain. Complementation results in the formation of unstable heterodimers. None of the mutations alters the K(m) for HPr, which is phosphorylated by enzyme I. Arg126 is a conserved residue; the Arg126Cys mutation gives a V(max) of 0.04% wild-type, establishing a role in phosphoryl transfer. The Gly356Ser and Arg375Cys mutations reduce enzyme I V(max) to 4 and 2%, respectively, and for both, the PEP K(m) is increased from 0.1 to 3 mM. It is concluded that this activity was from the monomer, rather than the dimer normally found in assays of wild-type. In the presence of Arg126Cys enzyme, V(max) for Gly356Ser and Arg375Cys enzymes I increased 6- and 2-fold, respectively; the K(m) for PEP decreased to <10 microM, but the K(m) became dependent upon the stability of the heterodimer in the assay. Gly356 is conserved in enzyme I and pyruvate phosphate dikinase, which is a homologue of enzyme I, and this residue is part of a conserved sequence in the subunit interaction site. Gly356Ser mutation impairs enzyme I dimerization. The mutation Arg375Cys also impairs dimerization, but the equivalent residue in pyruvate phosphate dikinase is not associated with the subunit interaction site. A 37 000 Da, C-terminal domain of enzyme I has been expressed and purified; it dimerizes and complements Gly356Ser and Arg375Cys enzymes I proving that the association/dissociation properties of enzyme I are a function of the C-terminal domain.  相似文献   

8.
von Willebrand factor (vWF) is a multimeric plasma glycoprotein that mediates platelet adhesion to the subendothelium via binding to platelet glycoprotein Ib (GPIb) and to components of the vessel wall. Recently, missense mutations that cause type IIB von Willebrand disease (vWD) were described, clustered within a disulfide loop in the A1 domain of vWF that has binding sites for GPIb, collagen, and heparin. In type IIB vWD, plasma vWF exhibits increased affinity for platelet GPIb, but decreased binding to collagen and heparin. The effect was studied of a type IIB vWD mutation, Arg578-->Gln, on the interaction of vWF with GPIb, collagen, and heparin. Recombinant wild type rvWF and mutant rvWF(R578Q) were expressed in COS-7 cells. Ristocetin-induced binding of rvWF(R578Q) to GPIb was markedly increased compared with rvWF, confirming that the Arg578-->Gln mutation causes the characteristic gain-of-function abnormality of type IIB vWD; botrocetin-induced binding was only slightly increased. Binding to collagen type III and heparin-agarose was compared for rvWF(R578Q) and plasma vWF from patients with four different type IIB mutations: Arg543-->Trp, Arg545-->Cys, Val553-->Met, Arg578-->Gln. For all of the plasma samples, binding to collagen and to heparin was reduced compared with normal plasma. In contrast, binding of rvWF(R578Q) to collagen and heparin was normal compared with wild type rvWF. Therefore, the Arg578-->Gln mutation increases the affinity of vWF for GPIb but does not directly impair vWF interaction with collagen or heparin. Arg578 may therefore be necessary to prevent normal vWF from interacting with GPIb. In type IIB vWD, the defective binding of plasma vWF to collagen and heparin may be secondary to post-synthetic modifications that occur in vivo, such as the loss of high molecular weight vWF multimers.  相似文献   

9.
Autosomal recessive congenital ichthyosis (ARCI) is a rare, heterogenous keratinization disorder of the skin, classically divided into two clinical subtypes, lamellar ichthyosis (LI) and nonbullous congenital ichthyosiformis erythroderma (CIE). Recently, strong evidence for the involvement of the transglutaminase 1 gene (TGM1) in LI has evolved. We have studied ARCI in the isolated Finnish population, in which recessive disorders are often caused by single mutations enriched by a founder effect. Surprisingly, five different mutations of TGM1 (Arg141His, Arg142Cys, Gly217Ser, Val378Leu, and Arg395Leu) were found in Finnish ARCI patients. In addition to affected LI patients, we also identified TGM1 mutations in CIE patients. Moreover, haplotype analysis of the chromosomes carrying the most common mutation, a C-->T transition changing Arg142 to Cys, revealed that the same mutation has been introduced twice in the Finnish population. In addition to this Arg142Cys mutation, three other mutations, in Arg141 and Arg142, have been described elsewhere, in other populations. These findings suggest that this region of TGM1 is more susceptible to mutation. The corresponding amino acid sequence is conserved in other transglutaminases, but, for example, coagulation factor XIII (FXIII) mutations do not cluster in this region. Protein modeling of the Arg142Cys mutation suggested disruption or destabilization of the protein. In transfection studies, the closely related transglutaminase FXIII protein with the corresponding mutation was shown to be susceptible to degradation in COS cells, further supporting evidence of the destabilizing effect of the Arg142Cys mutation in TGM1.  相似文献   

10.
Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein.  相似文献   

11.
In this study, we present clinical feature of a novel case with homozygous apolipoprotein (apo) E5.The patient was a 53-year-old Japanese woman. She was from a small island off the coast of Kagoshima Prefecture, Japan. Her parents were first degree cousins. No corneal opacification, xanthomatosis, lymphadenopathy, or hepatosplenomegaly was observed. There have been no signs of clinically overt atherosclerosis to date. Her serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL)-cholesterol levels were 11.6, 6.1 and 1.2 mmol/l, respectively, and apo A-I, A-II, B, C-II, C-III and E levels were 121, 34.8, 269, 10.4, 25.7 and 10.3 mg/dl, respectively. Serum lipoprotein profile analyzed by agarose gel electrophoresis and differential staining revealed markedly increased cholesterol and TG in both beta and prebeta-migrated lipoproteins, whereas alpha-migrated lipoprotein showed decreased cholesterol. Her apo E isoform analyzed by isoelectric focusing (IEF) was found to be homozygous apo E5.Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis of her apo E and lipoprotein lipase (LPL) genes revealed that she had a homozygous apo E (Glu3-->Lys) and heterozygous LPL variant Ser447 to Ter. Her son and daughter, both of whom had hyperlipidemia, were found to have apo E3/5 phenotype. Direct sequencing analysis of her apo E gene confirmed a homozygous one nucleotide change: G to A at nucleotide position of 2836 in the exon 3, resulting in Glu3-->Lys mutation.This is the first report of lipids and lipoprotein profiles in patients with homozygous apo E5 (Glu3-->Lys).  相似文献   

12.
Smirnova IN  Kaback HR 《Biochemistry》2003,42(10):3025-3031
Lactose permease with Cys154 --> Gly (helix V) binds substrate with high affinity but catalyzes little or no transport. The purified, detergent-solubilized mutant protein exhibits much greater thermal stability than the wild type and little tendency to aggregate. Stabilization is also observed in vivo with an unstable mutant that is expressed at significantly higher levels when the Cys154 --> Gly mutation is introduced. In addition, ligand-induced conformational changes are markedly reduced or abolished by the Cys154 --> Gly mutation: (i) Although the fluorescence of purified single Trp33 (helix I) permease is enhanced by ligand binding, introduction of the Cys154 --> Gly mutation abolishes the effect. (ii) The rate of 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) labeling of permease with a single Cys residue in place of Val331 (helix X) is increased in the presence of ligand but reduced when the Cys154 --> Gly mutation is present. (iii) Fluorescence emission intensity of MIANS-labeled single Cys331 permease is enhanced and blue shifted in the Cys154 --> Gly mutant background, indicating that the latter mutation causes position 331 to become exposed to a less polar environment. The results indicate that the Cys154 --> Gly mutation causes a more compact structure and decreased conformational flexibility, an alteration that specifically blocks the structural changes necessary for substrate translocation with little or no effect on ligand binding.  相似文献   

13.
Kwaw I  Sun J  Kaback HR 《Biochemistry》2000,39(11):3134-3140
The N- and C-terminal halves of lactose permease, each with a single-Cys residue in a cytoplasmic loop, were coexpressed, and cross-linking was studied in the absence or presence of ligand. Out of the 68 paired-Cys mutants in cytoplasmic loops IV/V and VIII/IX or X/XI, three pairs in loop IV/V and X/XI, (i) Arg135 --> Cys/Thr338 --> Cys, (ii) Arg134 --> Cys/Val343 --> Cys, and (iii) Arg134 --> Cys/Phe345 --> Cys, form a spontaneous disulfide bond, indicating that loops IV/V and X/XI are in close proximity. In addition, specific paired-Cys residues in loop IV/V (132-138) and loop VIII/IX (282-290) or loop X/XI (335-345) cross-link with iodine and/or the homobifunctional cross-linking agents N, N'-o-phenylenedimaleimide, N,N'-p-phenylenedimaleimide, and 1, 6-bis(maleimido)hexane. The results demonstrate that loop IV/V is close to both loop VIII/IX and loop X/XI. On the other hand, similar though less extensive cross-linking studies indicate that neither the N terminus nor loop II/III appear to be close to loops VIII/IX or X/XI. The findings suggest that the longer cytoplasmic loops are highly flexible and interact in a largely random fashion. However, although a Cys residue at position 134 in loop IV/V, for example, is able to cross-link with a Cys residue at each position in loop VIII/IX or loop X/XI, Cys residues at other positions in loop IV/V exhibit markedly different cross-linking patterns. Therefore, although the domains appear to be very flexible, the interactions are not completely random, suggesting that there are probably at least some structural constraints that limit the degree of flexibility. In addition, evidence is presented suggesting that ligand binding induces conformational alterations between loop IV/V and loop VIII/IX or X/XI.  相似文献   

14.
You M  Li E  Hristova K 《Biochemistry》2006,45(17):5551-5556
The Gly380 --> Arg mutation in the TM domain of fibroblast growth factor receptor 3 (FGFR3) of the RTK family is linked to achondroplasia, the most common form of human dwarfism. The molecular mechanism of pathology induction is under debate, and two different mechanisms have been proposed to contribute to pathogenesis: (1) Arg380-mediated FGFR3 dimer stabilization and (2) slow downregulation of the activated mutant receptors. Here we show that the Gly380 --> Arg mutation does not alter the dimerization energetics of the FGFR3 transmembrane domain in detergent micelles or in lipid bilayers. This result indicates that pathogenesis in achondroplasia cannot be explained simply by a higher dimerization propensity of the mutant FGFR3 TM domain, thus highlighting the importance of the observed slow downregulation in phenotype induction.  相似文献   

15.
Wolin CD  Kaback HR 《Biochemistry》2000,39(20):6130-6135
Glu126 (helix IV) and Arg144 (helix V) in the lactose permease of Escherichia coli are critical for substrate binding and transport, and the two residues are in close proximity and charge-paired. By using a functional permease construct with two tandem factor Xa protease sites in the cytoplasmic loop between helices IV and V, it is shown here that Cys residues in place of Glu126 and Arg144, as well as Ala122 and Val149, spontaneously form disulfide bonds in situ, indicating that this region of transmembrane domains IV and V is in the alpha-helical conformation. To determine if the local structure or environment is perturbed by the presence of an unpaired charge, either Glu126 or Arg144 or both were replaced with Ala, and cross-linking between the Cys pair Ala122-->Cys/Val149-->Cys was studied. Ala replacement for Arg144 causes a marked decrease in cross-linking, while Ala replacement for Glu126 alone or for both Glu126 and Arg144 has little effect. The data provide strong support for the argument that Glu126 and Arg144 are within close proximity and suggest that an unpaired carboxylate at position 126 causes a structural change at the interface between helices IV and V.  相似文献   

16.
The surface of Manduca sexta low density lipophorin (LDLp) particles was employed as a template to examine the relative lipid binding affinity of the 22 kDa receptor binding domain (residues 1–183) of human apolipoprotein E3 (apo E3). Isolated LDLp was incubated with exogenous apolipoprotein and, following re-isolation by density gradient ultracentrifugation, particle apolipoprotein content was determined. Incubation of recombinant human apo E3(1–183) with LDLp resulted in a saturable displacement of apolipophorin III (apo Lp-III) from the particle surface, creating a hybrid apo E3(1–183)-LDLp. Although subsequent incubation with excess exogenous apo Lp-III failed to reverse the process, human apolipoprotein A-I (apo A-I) effectively displaced apo E3(1–183) from the particle surface. We conclude that human apo E N-terminal domain possesses a higher intrinsic lipid binding affinity than apo Lp-III but has a lower affinity than human apo A-I. The apo E3(1–183)-LDLp hybrid was competent to bind to the low density lipoprotein receptor on cultured fibroblasts. The system described is useful for characterizing the relative lipid binding affinities of wild type and mutant exchangeable apolipoproteins and evaluation of their biological properties when associated with the surface of a spherical lipoprotein.  相似文献   

17.
Steady-state and rapid kinetic studies were conducted to functionally characterize the overall and partial reactions of the Ca2+ transport cycle mediated by the human sarco(endo)plasmic reticulum Ca2+-ATPase 2 (SERCA2) isoforms, SERCA2a and SERCA2b, and 10 Darier disease (DD) mutants upon heterologous expression in HEK-293 cells. SERCA2b displayed a 10-fold decrease in the rate of Ca2+ dissociation from E1Ca2 relative to SERCA2a (i.e. SERCA2b enzyme manifests true high affinity at cytosolic Ca2+ sites) and a lower rate of dephosphorylation. These fundamental kinetic differences explain the increased apparent affinity for activation by cytosolic Ca2+ and the reduced catalytic turnover rate in SERCA2b. Relative to SERCA1a, both SERCA2 isoforms displayed a 2-fold decrease of the rate of E2 to E1Ca2 transition. Furthermore, seven DD mutants were expressed at similar levels as wild type. The expression level was 2-fold reduced for Gly23 --> Glu and Ser920 --> Tyr and 10-fold reduced for Gly749 --> Arg. Uncoupling between Ca2+ translocation and ATP hydrolysis and/or changes in the rates of partial reactions account for lack of function for 7 of 10 mutants: Gly23 --> Glu (uncoupling), Ser186 --> Phe, Pro602 --> Leu, and Asp702 --> Asn (block of E1 approximately P(Ca2) to E2-P transition), Cys318 --> Arg (uncoupling and 3-fold reduction of E2-P to E2 transition rate), and Thr357 --> Lys and Gly769 --> Arg (lack of phosphorylation). A 2-fold decrease in the E1 approximately P(Ca2) to E2-P transition rate is responsible for the 2-fold decrease in activity for Pro895 --> Leu. Ser920 --> Tyr is a unique DD mutant showing an enhanced molecular Ca2+ transport activity relative to wild-type SERCA2b. In this case, the disease may be a consequence of the low expression level and/or reduction of Ca2+ affinity and sensitivity to inhibition by lumenal Ca2+.  相似文献   

18.
The crystal structure of the Na+-coupled melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) demonstrates that MelB is a member of the major facilitator superfamily of transporters. Arg residues at positions 295, 141, and 363 are involved in interdomain interactions at the cytoplasmic side by governing three clusters of electrostatic/polar interactions. Insertion of (one at a time) Glu, Leu, Gln, or Cys at positions R295, R141, and R363, or Lys at position R295, inhibits active transport of melibiose to a level of 2 to 20% of the value for wild-type (WT) MelBSt, with little effect on binding affinities for both sugar and Na+. Interestingly, a spontaneous suppressor, D35E (periplasmic end of helix I), was isolated from the R363Q MelBSt mutant. Introduction of the D35E mutation in each of the mutants at R295, R141 (except R141E), or R363 rescues melibiose transport to up to 91% of the WT value. Single-site mutations for the pair of D35 and R175 (periplasmic end of helix VI) were constructed by replacing Asp with Glu, Gln, or Cys and R175 with Gln, Asn, or Cys. All mutants with mutations at R175 are active, indicating that a positive charge at R175 is not necessary. Mutant D35E shows reduced transport; D35Q and D35C are nearly inactivated. Surprisingly, the D35Q mutation partially rescues both R141C and R295Q mutations. The data support the idea that Arg at position 295 and a positive charge at positions 141 and 363 are required for melibiose transport catalyzed by MelBSt, and their mutation inhibits conformational cycling, which is suppressed by a minor modification at the opposite side of the membrane.  相似文献   

19.
Hepatic assembly of triacylglycerol (TAG)-rich very low density lipoproteins (VLDL) is achieved through recruitment of bulk TAG (presumably in the form of lipid droplets within the microsomal lumen) into VLDL precursor containing apolipoprotein (apo) B-100. We determined protein/lipid components of lumenal lipid droplets (LLD) in cells expressing recombinant human apoC-III (C3wt) or a mutant form (K58E, C3KE) initially identified in humans that displayed hypotriglyceridemia. Although expression of C3wt markedly stimulated secretion of TAG and apoB-100 as VLDL(1), the K58E mutation (located at the C-terminal lipid binding domain) abolished the effect in transfected McA-RH7777 cells and in apoc3-null mice. Metabolic labeling studies revealed that accumulation of TAG in LLD was decreased (by 50%) in cells expressing C3KE. A Fat Western lipid protein overlay assay showed drastically reduced lipid binding of the mutant protein. Substituting Lys(58) with Arg demonstrated that the positive charge at position 58 is crucial for apoC-III binding to lipid and for promoting TAG secretion. On the other hand, substituting both Lys(58) and Lys(60) with Glu resulted in almost entire elimination of lipid binding and loss of function in promoting TAG secretion. Thus, the lipid binding domain of apoC-III plays a key role in the formation of LLD for hepatic VLDL assembly and secretion.  相似文献   

20.
A mutation linked to autistic spectrum disorders encodes an Arg to Cys replacement in the C-terminal portion of the extracellular domain of neuroligin-3. The solvent-exposed Cys causes virtually complete retention of the protein in the endoplasmic reticulum when the protein is expressed in transfected cells. An identical Cys substitution was reported for butyrylcholinesterase through genotyping patients with post-succinylcholine apnea. Neuroligin, butyrylcholinesterase, and acetylcholinesterase are members of the alpha,beta-hydrolase fold family of proteins sharing sequence similarity and common tertiary structures. Although these proteins have distinct oligomeric assemblies and cellular dispositions, homologous Arg residues in neuroligin-3 (Arg-451), in butyrylcholinesterase (Arg-386), and in acetylcholinesterase (Arg-395) are conserved in all studied mammalian species. To examine whether an homologous Arg to Cys mutation affects related proteins similarly despite their differing capacities to oligomerize, we inserted homologous mutations in the acetylcholinesterase and butyrylcholinesterase cDNAs. Using confocal fluorescence microscopy and analysis of oligosaccharide processing, we find that the homologous Arg to Cys mutation also results in endoplasmic reticulum retention of the two cholinesterases. Small quantities of mutated acetylcholinesterase exported from the cell retain activity but show a greater K(m), a much smaller k(cat), and altered substrate inhibition. The nascent proteins associate with chaperones during processing, but the mutation presumably restricts processing through the endoplasmic reticulum and Golgi apparatus, because of local protein misfolding and inability to oligomerize. The mutation may alter the capacity of these proteins to dissociate from their chaperone prior to oligomerization and processing for export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号