首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
为准确特异灵敏地检测猪细小病毒(PPV),建立一种新的LDR-PCR方法。首先在病毒的保守区内设计一对LDR探针,LDR探针两端各连有一段引物对应序列,以连接产物为模板进行PCR,琼脂糖凝胶电泳检测结果。以标准质粒为模板,通过对LDR反应的退火温度、连接酶浓度及探针浓度等反应条件进行优化,确定了LDR最佳的反应体系,并建立了LDR-PCR方法。结果表明,可以特异地检测PPV,与猪繁殖与呼吸障碍综合征病毒(PRRSV)、猪瘟病毒(CSFV)、伪狂犬病毒(PRV)、猪圆环病毒(PCV)、猪传染性胃肠炎病毒(TGEV)、猪流行性腹泻病毒(PEDV)无交叉反应;最低检测限为102个拷贝。利用建立的方法对41例临床样本进行检测,14份样品PPV阳性,与普通PCR检测结果符合率为97.6%。  相似文献   

2.
建立以TaqMan-MGB荧光探针为特点的荧光定量RT-PCR方法,用于检测H5亚型禽流感病毒。针对H5亚型禽流感病毒血凝素(HA)基因保守区域设计特异性引物与TaqMan-MGB荧光探针,筛选并优化荧光定量RT-PCR反应体系与反应条件,用以提高方法的特异性、敏感性与准确性;并通过体外克隆技术建立病毒基因拷贝数进行定量分析。结果表明:引物与探针的优化浓度分别640nmol/L和480nmol/L,体系具有良好的保守性和特异性,与其他呼吸道病毒均无交叉反应。方法检测灵敏度为100拷贝/反应,标准曲线线性范围为107~102拷贝/反应,从病毒核酸提取至检测完成仅需3h左右,操作简便,重现性好。本研究建立的TaqMan-MGB荧光定量PCR方法特异、敏感、快速,适合于临床实验室进行H5亚型禽流感病毒的快速定量检测。  相似文献   

3.
为了建立一种快速准确的检测埃博拉病毒(EBOV)亚型的方法。本研究根据GenBank中公布的EBOV NP基因序列,通过设计引物和优化反应条件,建立了一种SYBR GreenⅠ荧光定量RT-PCR检测方法检测EBOV。以体外转录的EBOV RNA为模板进行试验,该方法检测的灵敏度可以达到1.0×102个拷贝/μL,检测范围达到9个数量级为102~1010,可检测5种亚型EBOV。建立的方法对马尔堡病毒(MARV)、登革病毒(DENV)、新疆出血热病毒(XHFV)、乙型脑炎病毒(JEV)、流感病毒(H1N1和H3N2)和猪繁殖和呼吸综合征病毒(PRRSV)E基因组RNA无非特异性扩增。本文将荧光定量RT-PCR技术用于埃博拉病毒的定量检测中,并且建立了EBOV SYBRGreenⅠ荧光定量RT-PCR检测方法。  相似文献   

4.
鉴别伪狂犬病病毒野毒与疫苗毒荧光定量PCR方法的建立   总被引:2,自引:0,他引:2  
根据猪伪狂犬病病毒(PRV) gH、gE基因的序列, 设计了两对引物及其对应的TaqMan探针, 通过对引物、探针、Mg2+的浓度和样品DNA提取方法等进行优化, 建立了鉴别PRV野毒与疫苗毒感染的荧光定量PCR方法。该方法线性范围为101~108拷贝/mL, 达8个数量级, 灵敏度可达101拷贝/mL, 比常规PCR高100倍。用此方法对60份疑似组织样品进行检测, 并与血清中和试验、常规PCR相比较, 结果显示该方法具有快速、灵敏、特异、重复性好和能对样品进行定量检测等优点, 并且该法以闭管的模式操作, 减少了后续步骤污染的可能性, 整个PCR检测过程不到2 h。此方法的建立, 为猪伪狂犬病病毒的早期鉴别诊断和定量分析猪伪狂犬病病毒感染程度奠定了基础。  相似文献   

5.
本研究登录Genbank对猪圆环病毒2型基因的序列进行分析,用Primer 5.0设计了ORF2基因的扩增引物,试图选择一种比较合理的PCR方法检查PCV2感染的病原,以期这种PCR方法可以有效分析猪综合征障碍病毒(PRRSV)、猪细小病毒(PPV)、猪瘟病毒的扩增(HCV)、猪伪狂犬病毒(PRV)等比较常见的病原。研究结果表明,在PCV2进行扩增阳性样品检测中,发现一条异常447 bp的DNA条带,对产物测序结果进行扩增分析,证明其是PCV ORF2基因序列。敏感性检验分析表明检测样本DNA浓度时达到了9.8×10-4ng/μL。PCR实验具有良好的稳定性和重复性。根据对66例临床病猪的分析表明,在PCV2的检测中阳性感染率是27.26%,这可能受到HCV、PRRSV、PRV、PPV等多种病毒的感染,其中混合感染的比例达到了72.23%。  相似文献   

6.
禽流感和新城疫病毒二重荧光定量RT-PCR检测方法的建立   总被引:4,自引:1,他引:3  
目的:建立二重荧光定量RT-PCR方法,用于禽流感病毒(AIV)和新城疫病毒(NDV)的检测。方法:根据AIV和NDV的基因保守序列,设计了AIV和NDV的2对特异性引物和2条用不同荧光基团标记的TaqMan探针;对反应条件和试剂浓度进行优化,建立了能够同时检测AIV和NDV的Z-重荧光定量RT-PCR方法。结果:所建方法特异性好,对AIV和NDV的检测敏感性均达到2000个模板拷贝数,比常规RT-PCR敏感性高100倍;抗干扰能力强,对AIV和NDV不同模板浓度进行组合,仍可有效地同时检测2种病毒。对保存的AIV或NDV鸡胚尿囊液及临床病料进行二重荧光定量RT-PCR检测,结果尿囊液检测的拷贝数均达到10^10/μL以上,临床病料的拷贝数为2.13x10^8-6.52x10^4/μL。结论:建立了用于检测AIV和NDV的二重荧光定量RT-PCR法,该方法特异、敏感、快速、可定量,对AIV和NDV的防制有重要意义。  相似文献   

7.
Porcine circovirus type 2 (PCV2) has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR) for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.  相似文献   

8.
Herpes simplex viruses types 1 and 2 are members of the Alphaherpesviridae subfamily, as they can infect both skin and nerves and develop latent infection within the dorsal root and trigeminal ganglia. Infections with these viruses are common worldwide and cause wide range of clinical syndromes. Although HSV-1/2 infect healthy children and adults, disease is more severe and extensive in the immunocompromised individuals and/or during neuroinfections. The aim of the study was development of real-time PCR assay for detection and differentiation of herpes simplex viruses type 1 and 2. DNA in clinical samples, using specific dual-channel HybProbe chemistry. The nalytical sensitivity of assay was tested using serial dilutions of HSV-1 and HSV-2 DNA in range between 10 degrees and 10(-5). (4.35 x 10(5)-4.00 x 10(2) copies/ml and 4.18 x 10(5)-3.82 x 10(2) copies/ml, respectively). Thirty four cell line isolates and sixteen clinical samples taken from a group of adult patients with neurological signs were tested for the presence of HSV-1/2 DNA in the LightCycler instrument. Described in-house real-time PCR assay detected herpesviral DNA in all cell line isolates (31 of them were HSV-1 positive; 3 were HSV-2 positive) and in 10 clinical samples (positive only for HSV-1). The conclusion is that developed HybProbe-based real-time PCR test is very reliable and valuable tool for detection and differentiation of HSV-1/2 viremia in different kind of samples. The high level of sensitivity and accuracy provided by this assay is favorable for the quantification of herpes simplex virus 1 and 2 DNA in clinical specimens, especially during low-copy infections.  相似文献   

9.
We describe a duplex real-time PCR assay using TaqMan probes for the simultaneous detection of monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). Both MBV and HPV are shrimp enteric viruses that infect intestinal and hepatopancreatic epithelial cells. Both viruses can cause significant mortalities and depressed growth in infected larval, postlarval, and early juvenile stages of shrimp, and thus present a risk to commercial aquaculture. In this duplex assay, we combined 2 single real-time PCRs, amplifying MBV and HPV, in a one-tube PCR reaction. The 2 viruses were distinguished by specific fluorescent labels at the 5' end of TaqMan probes: the MBV probe was labeled with dichlorodimethoxyfluorescein (JOE), and the HPV probe was labeled with 6-carboxyfluorescein (FAM). The duplex real-time PCR assay was performed in a multi-channel real-time PCR detection system, and MBV and HPV amplification signals were separately detected by the JOE and FAM channels. This duplex assay was validated to be specific to the target viruses and found to have a detection limit of single copies for each virus. The dynamic range was found to be from 1 to 1 x 10(8) copies per reaction. This assay was further applied to quantify MBV and HPV in samples of infected Penaeus monodon collected from Malaysia, Indonesia, and Thailand. The specificity and sensitivity of this duplex real-time PCR assay offer a valuable tool for routine diagnosis and quantification of MBV and HPV from both wild and farmed shrimp stocks.  相似文献   

10.
A real-time polymerase chain reaction with SYBR Green was developed for the detection and quantification of encephalomyocarditis virus (EMCV) in porcine tissues; the method uses two primers specific for the 3D gene. The detection limit of this assay was 22 gene copies/reaction, equivalent to 0.001?TCID50/ml. The assay was linear over a 107 dilution range of template concentrations and was specific for EMCV; it did not amplify other porcine pathogens (porcine circovirus 2, porcine reproductive and respiratory virus, classical swine fever virus, pseudorabies virus, or porcine teschovirus). This assay detected EMCV titers at least 104 smaller than the routine PCR assay. To increase our understand of EMCV pathogenesis, the new method was used to quantify levels of EMCV genome in various tissues of artificially challenged sows and piglets. The virus was found mainly in the heart, lung, spleen, kidney, and endometrium of sows, and mainly in the heart, spleen, lung, and testis of fetuses. The real-time PCR method described here should be useful for the study of EMCV infection and distribution in pigs.  相似文献   

11.
根据高效培养鸡传染性法氏囊病毒(IBDV)时对病毒滴度检测的需要,本文针对BDV的VP4基因的保守序列设计并合成了一对引物,以所构建的重组质粒作为阳性标准品,建立了检测IBDV核酸载量的SYBR Green I荧光定量实时RT-PCR(qRT-PCR)方法,结果表明,其Ct值与标准品模板在4.03×1E1~1E9 拷贝/μL范围内呈良好的线性关系,对IBDV核酸的最低检出量为40拷贝/μL,灵敏度是常规RT-PCR检测方法的1000倍;该方法不与其它禽源病毒发生交叉反应,批内变异系数小于0.05%。应用本方法对DF-1细胞中IBDV的增殖滴度进行了测定,并与经典的TCID50测定方法进行了比较。结果显示两种方法测定的IBDV在微载体悬浮培养和方瓶静态培养条件下DF-1细胞上的增殖曲线都具有一定的平行关系,且qRT-PCR方法比TCID50方法更加快速和敏感,更适合于对IBDV增殖滴度的实时快速测定。  相似文献   

12.
The objective of this study was to develop a novel EvaGreen (EG) based real-time PCR technique for the simultaneous detection of Equine herpesvirus 1 (EHV-1) and Equine herpesvirus 4 (EHV-4) genomes from equine nasal swabs. Viral genomes were identified based on their specific melting temperatures (T m), which are 88.0 and 84.4 °C for EHV-1 and EHV-4, respectively. The detection limitation of this method was 50 copies/μl or 0.15 pg/μl for EHV-1 and 5 copies/μl or 2.5 fg/μl for EHV-4. This assay was 50–1,000 times more sensitive than the SYBR Green (SG)-based assay using the same primer pairs and as sensitive as the TaqMan-MGB probe-based assay. The validity of the real-time PCR assays was confirmed by testing 13 clinical samples. When all results of the EG, SG, and TaqMan probe-based singleplex and duplex real-time PCRs were considered together, a total of 84.6 % (11/13) horses and donkeys were positive for at least one virus. EHV-1 and EHV-4 coexisted in 81.8 % (9/11) horses. Overall, we report that the EvaGreen duplex real-time PCR is an economical and alternative diagnostic method for the rapid differentiation of EHV-1 and EHV-4 in nasal swabs.  相似文献   

13.
A loop-mediated isothermal amplification (LAMP) method with a real-time monitoring system was developed for the detection of porcine circovirus type 1 (PCV1) in commercial swine vaccines. This method was highly specific for PCV1. No cross-reaction to porcine circovirus type 2, porcine parvovirus, pseudorabies virus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus was observed. The analytical sensitivity of the LAMP for PCV1 DNA was 10 copies/μl in the case of positive recombinant plasmid comparable to that obtained from the nested polymerase chain reaction (nested PCR). Furthermore, 25 commercial swine vaccines were tested by both the LAMP and the nested PCR, and three of them were tested positive for PCV1 DNA. These results indicate that PCV1 DNA can be real-time detected by the LAMP; the method was highly specific, sensitive, and rapid for the detection of PCV1 DNA, particularly in commercial swine vaccines.  相似文献   

14.
15.
Prompt laboratory diagnosis of leptospirosis infection facilitates patient management and initiation of therapy. A cost effective real-time PCR assay using SYBR Green I was developed for detection of pathogenic leptospires in serum specimens. Specific PCR products were obtained only with DNA of pathogenic Leptospira genomospecies. LightCycler PCR ability to distinguish between species was possible using melting curves, providing an approach for identification with a specific Tm assigned to a single species or set of species. Assay sensitivity was approximately 50 leptospires/ml, corresponding to one to two genome copies in a PCR mixture. Fifty-one patients who had clinical symptoms consistent with leptospirosis were tested both with a previously described rrs amplification and our real-time assay. Our LFB1 real-time assay confirmed the diagnosis for 25 patients (49%, 25/51) and revealed an estimated density of 8.0x10(1)-3.9x10(4) leptospires/ml of blood. The total assay time for 12 clinical samples from sample to data analysis was less than 3 h. These data illustrate the potential of our LFB1 real-time assay for the rapid detection of leptospires in serum samples and their subsequent quantification in a single run.  相似文献   

16.
为建立高效快速的PRRSV NADC30-Like毒株荧光定量PCR(SYBR Green real-time PCR)检测方法,根据NADC30毒株Nsp2基因保守序列设计特异性引物,通过优化确定最佳反应条件,并进行灵敏度、特异性、重复性实验以及临床样品的检测。结果显示,标准品在10~7 copies/μL到10~2 copies/μL浓度范围内具有良好的线性关系,最低检测浓度为2.25×10~1 copies/μL;该方法与HP-PRRSV、PCV、PEDV、TGEV、PRV、CSFV、PoRV无交叉反应,批内和批间的变异系数(CV)小于1.9%,在临床样品的检测中较普通PCR有更高的检出率。建立了PRRSV NADC30-Like毒株荧光定量PCR检测方法,具有敏感性高、特异性强、稳定性好、准确度高和检测快速等优点,可用于PRRSV NADC30-Like感染的早期诊断、样品的快速检测与定量分析。  相似文献   

17.
Tobacco mosaic virus (TMV) causes significant yield loss in susceptible crops irrigated with contaminated water. However, detection of TMV in water is difficult owing to extremely low concentrations of the virus. Here, we developed a simple method for the detection and quantification of TMV in irrigation water. TMV was reliably detected at concentrations as low as 10 viral copies/μL with real-time PCR. The sensitivity of detection was further improved using polyethylene glycol 6000 (PEG6000, MW 6000) to concentrate TMV from water samples. Among the 28 samples from Shaanxi Province examined with our method, 17 were tested positive after virus concentration. Infectivity of TMV in the original water sample as well as after concentration was confirmed using PCR. The limiting concentration of TMV in water to re-infect plants was determined as 102 viral copies/mL. The method developed in this study offers a novel approach to detect TMV in irrigation water, and may provide an effective tool to control crop infection.  相似文献   

18.
19.
Multiplex PCR methods are attractive to clinical laboratories wanting to broaden their detection of respiratory viral pathogens in clinical specimens. However, multiplexed assays must be well optimized to retain or improve upon the analytic sensitivity of their singleplex counterparts. In this experiment, the lower limit of detection (LOD) of singleplex real-time PCR assays targeting respiratory viruses is compared to an equivalent panel on a multiplex PCR platform, the GenMark eSensor RVP. LODs were measured for each singleplex real-time PCR assay and expressed as the lowest copy number detected 95–100% of the time, depending on the assay. The GenMark eSensor RVP LODs were obtained by converting the TCID50/mL concentrations reported in the package insert to copies/μL using qPCR. Analytical sensitivity between the two methods varied from 1.2–1280.8 copies/μL (0.08–3.11 log differences) for all 12 assays compared. Assays targeting influenza A/H3N2, influenza A/H1N1pdm09, influenza B, and human parainfluenza 1 and 2 were most comparable (1.2–8.4 copies/μL, <1 log difference). Largest differences in LOD were demonstrated for assays targeting adenovirus group E, respiratory syncytial virus subtype A, and a generic assay for all influenza A viruses regardless of subtype (319.4–1280.8 copies/μL, 2.50–3.11 log difference). The multiplex PCR platform, the GenMark eSensor RVP, demonstrated improved analytical sensitivity for detecting influenza A/H3 viruses, influenza B virus, human parainfluenza virus 2, and human rhinovirus (1.6–94.8 copies/μL, 0.20–1.98 logs). Broader detection of influenza A/H3 viruses was demonstrated by the GenMark eSensor RVP. The relationship between TCID50/mL concentrations and the corresponding copy number related to various ATCC cultures is also reported.  相似文献   

20.
目的建立SYBR GreenⅠ荧光染料实时定量RT-PCR方法,测定实验动物等来源的EV71病毒RNA。方法运用EV71VP1保守区引物,优化real time RT-PCR条件,运用NASBA方法扩增EV71病毒RNA,计算拷贝数,经10倍系列稀释做出标准曲线,作为EV71病毒RNA定量检测的外标准品。结果应用Qiagen公司QuantiTect SYBR Green RT-PCR Kit,该标准品可精确定量到100copies/μL,PCR扩增效率达到99.5%。结论 SYBRGreenⅠ荧光染料实时定量PCR法测定EV71病毒RNA拷贝数的方法敏感性高、稳定性好,可用于EV71病毒RNA载量的定量测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号