首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phage T4 lysozyme is a well folded and highly soluble protein that is widely used as an insertion tag to improve solubility and crystallization properties of poorly behaved recombinant proteins. It has been used in the fusion protein strategy to facilitate crystallization of various proteins including multiple G protein‐coupled receptors, lipid kinases, or sterol binding proteins. Here, we present a structural and biochemical characterization of its novel, metal ions‐binding mutant (mbT4L). We demonstrate that mbT4L can be used as a purification tag in the immobilized‐metal affinity chromatography and that, in many respects, it is superior to the conventional hexahistidine tag. In addition, structural characterization of mbT4L suggests that mbT4L can be used as a purification tag compatible with X‐ray crystallography.  相似文献   

2.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

3.
4.
Thomas U. Schwartz 《Proteins》2013,81(11):1857-1861
His‐tag affinity purification is one of the most commonly used methods to purify recombinant proteins expressed in E. coli. One drawback of using the His‐tag is the co‐purification of contaminating histidine‐rich E. coli proteins. We engineered a new E. coli expression strain, LOBSTR (lo w b ackground str ain), which eliminates the most abundant contaminants. LOBSTR is derived from the E. coli BL21(DE3) strain and carries genomically modified copies of arnA and slyD, whose protein products exhibit reduced affinities to Ni and Co resins, resulting in a much higher purity of the target protein. The use of LOBSTR enables the pursuit of challenging low‐expressing protein targets by reducing background contamination with no additional purification steps, materials, or costs, and thus pushes the limits of standard His‐tag purifications. Proteins 2013; 81:1857–1861. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Since immobilized metal ion affinity chromatography (IMAC) was first reported, several modifications have been developed. Among them, Ni2+ immobilized by chelation with nitrilotriacetic acid (NTA) bound to a solid support has become the most common method for the purification of proteins carrying either a C‐ or N‐terminal histidine (His) tag. Despite its broad application in protein purification, only little is known about the binding properties of the His‐tag, and therefore almost no thermodynamic and kinetic data are available. In this study, we investigated the binding mechanism of His‐tags to Ni2+‐NTA. Different series of oligohistidines and mixed oligohistidines/oligoalanines were synthesized using automated solid‐phase peptide synthesis (SPPS). Binding to Ni2+‐NTA was analyzed both qualitatively and quantitatively with surface plasmon resonance (SPR) using commercially available NTA sensor chips from Biacore. The hexahistidine tag shows an apparent equilibrium dissociation constant (KD) of 14 ± 1 nM and thus the highest affinity of the peptides synthesized in this study. Furthermore, we could demonstrate that two His separated by either one or four residues are the preferred binding motifs within hexahis tag. Finally, elongation of these referred motifs decreased affinity, probably due to increased entropy costs upon binding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This work combines two well-established technologies to generate a breakthrough in protein production and purification. The first is the production of polyhydroxybutyrate (PHB) granules in engineered strains of Escherichia coli. The second is a recently developed group of self-cleaving affinity tags based on protein splicing elements known as inteins. By combining these technologies with a PHB-specific binding protein, a self-contained protein expression and purification system has been developed. In this system, the PHB-binding protein effectively acts as an affinity tag for desired product proteins. The tagged product proteins are expressed in E. coli strains that also produce intracellular PHB granules, where they bind to the granules via the PHB-binding tag. The granules and attached proteins can then be easily recovered following cell lysis by simple mechanical means. Once purified, the product protein is self-cleaved from the granules and released into solution in a substantially purified form. This system has been successfully used at laboratory scale to purify several active test proteins at reasonable yield. By allowing the bacterial cells to effectively produce both the affinity resin and tagged target protein, the cost associated with the purification of recombinant proteins could be greatly reduced. It is expected that this combination of improved economics and simplicity will constitute a significant breakthrough in both large-scale production of purified proteins and enzymes and high-throughput proteomics studies of peptide libraries.  相似文献   

7.
Histidine (His)‐tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of this study was to evaluate His‐tag procedure quantitatively and to compare it with immunoprecipitation using radiolabeled tristetraprolin (TTP), a zinc finger protein with anti‐inflammatory property. Human embryonic kidney 293 cells were transfected with wild‐type and nine mutant plasmids with single or multiple phosphorylation site mutation(s) in His‐TTP. These proteins were expressed and mainly localized in the cytosol of transfected cells by immunocytochemistry and confocal microscopy. His‐TTP proteins were purified by Ni‐NTA beads with imidazole elution or precipitated by TTP antibodies from transfected cells after being labeled with [32P]‐orthophosphate. The results showed that (1) His‐tag purification was more effective than immunoprecipitation for TTP purification; (2) mutations in TTP increased the yield of His‐TTP by both purification procedures; and (3) mutations in TTP increased the binding affinity of mutant proteins for Ni‐NTA beads. These findings suggest that bioengineering phosphorylation sites in proteins can increase the production of recombinant proteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
Peptide tag systems are a robust biophysical and biochemical method that is widely used for protein detection and purification. Here, we developed a novel tag system termed “HiP4” (histidine plus four amino acids) whose epitope sequence comprises only seven amino acids (HHHDYDI) that partially overlap with the conventional 6x histidine tag (6xHis-tag). We produced a monoclonal antibody against the HiP4 tag that can be used in multiple immunoassays with high specificity and affinity. Using this system, we developed a tandem affinity purification (TAP) and mass spectrometry (TAP-MS) system for comprehensive protein interactome analysis. The integrated use of nickel bead purification followed by HiP4 tag immunoprecipitation made it possible to reduce nonspecific binding and improve selectivity, leading to the recovery of previously unrecognized proteins that interact with hepatitis B virus X (HBx) protein or TAR DNA-binding protein 43 (TARDBP or TDP-43). Our results indicate that this system may be viable as a simple and powerful tool for TAP-MS that can achieve low background and high selectivity in comprehensive protein–protein interaction analyses.  相似文献   

9.
Purification of low-abundance plasma-membrane (PM) protein complexes is a challenging task. We devised a tandem affinity purification tag termed the HPB tag, which contains the biotin carboxyl carrier protein domain (BCCD) of Arabidopsis 3-methylcrotonal CoA carboxylase. The BCCD is biotinylated in vivo , and the tagged protein can be captured by streptavidin beads. All five C-terminally tagged Arabidopsis proteins tested, including four PM proteins, were functional and biotinylated with high efficiency in Arabidopsis. Transgenic Arabidopsis plants expressing an HPB-tagged protein, RPS2::HPB, were used to develop a method to purify protein complexes containing the HPB-tagged protein. RPS2 is a membrane-associated disease resistance protein of low abundance. The purification method involves microsomal fractionation, chemical cross-linking, solubilization, and one-step affinity purification using magnetic streptavidin beads, followed by protein identification using LC-MS/MS. We identified RIN4, a known RPS2 interactor, as well as other potential components of the RPS2 complex(es). Thus, the HPB tag method is suitable for the purification of low-abundance PM protein complexes.  相似文献   

10.
Genetically-encoded affinity tags constitute an important strategy for purifying proteins. Here, we have designed a novel affinity matrix based on the his-arsenical fluorescein dye FlAsH, which specifically recognizes short alpha-helical peptides containing the sequence CCXXCC (Griffin BA, Adams SR, Tsien RY, 1998, Science 281:269-272). We find that kinesin tagged with this cysteine-containing helix binds specifically to FlAsH resin and can be eluted in a fully active form. This affinity tag has several advantages over polyhistidine, the only small affinity tag in common use. The protein obtained with this single chromatographic step from crude Escherichia coli lysates is purer than that obtained with nickel affinity chromatography of 6xHis tagged kinesin. Moreover, unlike nickel affinity chromatography, which requires high concentrations of imidazole or pH changes for elution, protein bound to the FlAsH column can be completely eluted by dithiothreitol. Because of these mild elution conditions, FlAsH affinity chromatography is ideal for recovering fully active protein and for the purification of intact protein complexes.  相似文献   

11.
Human epidermal growth factor (hEGF) is a cellular factor that promotes cell proliferation and has been widely used for the treatment of wounds, corneal injuries, and gastric ulcers. Recombinant hEGF (rhEGF) has previously been expressed using the pTWIN1 system with pH‐induced intein and a chitin‐binding domain. The rhEGF protein can be purified by chitin affinity chromatography because of the high affinity between the chitin‐binding domain fusion‐tag and the column. However, uncontrolled cleavage presents a major problem with this method. To overcome this problem, a novel purification method has been developed for a pH‐induced intein tag rhEGF that is expressed in Escherichia coli. Following purification by denaturation of inclusion bodies, the fusion protein is renatured and simultaneously induced to self‐cleave by dialysis. Further purification of rhEGF is achieved by heat treatment and ion‐exchange chromatography. Our results show that the purity of rhEGF obtained through this method is over 98% and the quantity of purified rhEGF is 248 mg from a 1 L culture or 2,967 mg from a 12 L culture. Therefore, we conclude that we have developed an efficient purification method of rhEGF, which may be used for the purification of other heat‐resistant and acid‐resistant recombinant proteins. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:758–764, 2015  相似文献   

12.
Recombinant protein expression systems that produce high yields of pure proteins and multi‐protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X‐ray crystallography and cryo‐electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion‐tag to generate recombinant proteins using suspension‐cultured HEK293F cells. YFP is a dual‐function tag that enables direct visualization and fluorescence‐based selection of high expressing clones for and rapid purification using a high‐stringency, high‐affinity anti‐GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2β catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression.  相似文献   

13.
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format.  相似文献   

14.
The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S‐transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine‐containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7‐triazacyclononane (tacn). The use of this tag‐tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli‐expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP‐1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI‐TOF MS analysis of the cleaved products from the DAP‐1 digestion of the recombinant N‐terminally tagged proteins confirmed the complete removal of the tag within 4‐12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn‐based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli‐expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Previously, we reported a non‐chromatographic protein purification method exploiting the highly specific interaction between the dockerin and cohesin domains from Clostridium thermocellum and the reversible aggregation property of elastin‐like polypeptide (ELP) to provide fast and cost‐effective protein purification. However, the bound dockerin‐intein tag cannot be completely dissociated from the ELP‐cohesin capturing scaffold due to the high binding affinity, resulting in a single‐use approach. In order to further reduce the purification cost by recycling the ELP capturing scaffold, a truncated dockerin domain with the calcium‐coordinating function partially impaired was employed. We demonstrated that the truncated dockerin domain was sufficient to function as an effective affinity tag, and the target protein was purified directly from cell extracts in a single binding step followed by intein cleavage. The efficient EDTA‐mediated dissociation of the bound dockerin‐intein tag from the ELP‐cohesin capturing scaffold was realized, and the regenerated ELP capturing scaffold was reused in another purification cycle without any decrease in the purification efficiency. This recyclable non‐chromatographic based affinity method provides an attractive approach for efficient and cost‐effective protein purification. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:968–971, 2013  相似文献   

16.
Abstract

The current revolution in proteomics has been generated by the combination of very sensitive mass spectrometers coupled to microcapillary liquid chromatography, specific proteolysis of protein mixtures and software that is capable of searching vast numbers of mass measurements against predicted peptides from sequenced genomes. The challenges of post‐genomic plant biology include characterization of protein function, post‐translational modifications and composition of protein complexes as well as deciphering protein complements in intracellular compartments – proteomes of cell organelles. In this review we summarize the current mass spectrometry methods currently being used in plant proteomics and discuss the various tagging strategies that are being used for purification and proteomic analysis of plant protein complexes.

Abbreviations: BCCD, biotin carboxyl carrier protein domain; CBP, calmodulin‐binding protein; CID, collision‐induced dissociation; ESI, electrospray ionization; EST, expressed sequence tag; FT‐ICR, Fourier transform ion cyclotron resonance; GFP, green fluorescent protein; GST, glutathione S‐transferase; HA, haemagglutinin; HILEP, hydroponic isotope labelling of entire plants; His, histidine; HPB, HA–PreScission–Biotin; HPLC, high‐performance liquid chromatography; ICAT, isotope‐coded affinity tags; ICPL, isotope‐coded protein label; iTRAQ, isobaric tag for relative and absolute quantification; LC, liquid chromatography; MALDI, matrix‐assisted laser desorption ionization; MBP, maltose‐binding protein; MS, mass spectrometry; SDS‐PAGE, sodium dodecyl sulphate‐polyacrylamide gel electrophoresis; SILAC, stable isotope labelling with amino acids in cell culture; SILIP, stable isotope labelling in planta; Strep, streptavidin; TAP, tandem affinity purification; TBP, TATA‐box‐binding protein; TOF, time‐of‐flight; UPLC, ultraperformance liquid chromatography  相似文献   

17.
Although cultured mammalian cells are preferred for producing functional mammalian proteins with appropriate post-translational modifications, purification of recombinant proteins is frequently hampered by low expression. We have addressed this by creating a new method configured specifically for mammalian cell culture that provides rapid detection and efficient purification. This approach is based on HaloTag, a protein fusion tag designed to bind rapidly, selectively and covalently to a series of synthetic ligands that can carry a variety of functional groups, including fluorescent dyes for detection or solid supports for purification. Since the binding of HaloTag to the HaloLink resin is essentially irreversible, it overcomes the equilibrium-based binding limitations associated with affinity tags and enables efficient capture and purification of target protein, even at low expression levels. The target protein is released from the HaloLink resin by specific cleavage using a TEV protease fused to HaloTag (HaloTEV), leaving both HaloTag and HaloTEV permanently attached to the resin and highly pure, tag-free protein in solution. HaloTag fluorescent ligands enable fluorescent labeling of HaloTag fusion proteins, providing a convenient way to monitor expression, and thus facilitate the identification of optimal transient transfection conditions as well as the selection of high expression stable cell lines. The capabilities of this method have been demonstrated by the efficient purification of five functional human kinases from HEK293T cells. In addition, when purifications using FLAG, 3xFLAG, His(6)Tag and HaloTag were performed in parallel, HaloTag was shown to provide significantly higher yields, purity and overall recovery of the expressed proteins.  相似文献   

18.
We previously showed that baculovirus-derived recombinant prion protein (Bac-PrP) can be converted to the misfolded infectious form (PrPSc) by protein misfolding cyclic amplification, an in vitro conversion technique. Bac-PrP, with post-translational modifications, would be useful for various applications such as using PrP as an immunogen for generating anti-PrP antibody, developing anti-prion drugs or diagnostic assays using in vitro conversion systems, and establishing an in vitro prion propagation model. For this purpose, highly purified Bac-PrP with in vitro conversion activity is necessary for use as a PrPC source, to minimize contamination. Furthermore, an exogenous affinity tag-free form is desirable to avoid potential steric interference by the affinity tags during the conversion process. In this study, we established purification methods for the untagged Bac-PrP under native conditions by combining exogenous double-affinity tags, namely, a polyhistidine-tag and a profinity eXact tag, with an octarepeat sequence of the N-terminal region of PrP, which has metal ion-binding affinity. The untagged Bac-PrP with near-homogeneity was obtained by three-step affinity purification, and it was shown that the final, purified Bac-PrP could convert to its pathogenic form. The presented purification procedure could be applied not only to PrP but also to other eukaryotic, recombinant proteins that require high purity and intact physiological activity.  相似文献   

19.
Comparison of affinity tags for protein purification   总被引:11,自引:0,他引:11  
Affinity tags are highly efficient tools for purifying proteins from crude extracts. To facilitate the selection of affinity tags for purification projects, we have compared the efficiency of eight elutable affinity tags to purify proteins from Escherichia coli, yeast, Drosophila, and HeLa extracts. Our results show that the HIS, CBP, CYD (covalent yet dissociable NorpD peptide), Strep II, FLAG, HPC (heavy chain of protein C) peptide tags, and the GST and MBP protein fusion tag systems differ substantially in purity, yield, and cost. We find that the HIS tag provides good yields of tagged protein from inexpensive, high capacity resins but with only moderate purity from E. coli extracts and relatively poor purification from yeast, Drosophila, and HeLa extracts. The CBP tag produced moderate purity protein from E. coli, yeast, and Drosophila extracts, but better purity from HeLa extracts. Epitope-based tags such as FLAG and HPC produced the highest purity protein for all extracts but require expensive, low capacity resin. Our results suggest that the Strep II tag may provide an acceptable compromise of excellent purification with good yields at a moderate cost.  相似文献   

20.
Protein purification is still very empirical, and a unified method for purifying proteins without an affinity tag is not available yet. In the postgenomic era, functional genomics, however, strongly demands such a method. In this paper we have formulated a unique method that can be applied for purifying any recombinant basic protein from Escherichia coli. Here, we have found that if the pH of the buffer is merely one pH unit below the isoelectric point (pI) of the recombinant proteins, most of the latter bind to the column. This result supports the Henderson-Hasselbalch principle. Considering that E. coli proteins are mostly acidic, and based on the pI determined theoretically, apparently all recombinant basic proteins (at least pI−1 ? 6.94) may be purified from E. coli in a single step using a cation-exchanger resin, SP-Sepharose, and a selected buffer pH, depending on the pI of the recombinant protein. Approximately, two-fifths of human proteome, including many if not all nucleic acid-interacting proteins, have a pI of 7.94 or higher; virtually all these 12,000 proteins may be purified using this method in a single step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号