首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary surfactant is a lipid:protein complex containing dipalmitoyl-phosphatidylcholine (DPPC) as the major component. Recent studies indicate adsorbed surfactant films consist of a surface monolayer and a monolayer-associated reservoir. It has been hypothesized that the monolayer and its functionally contiguous reservoir may be enriched in DPPC relative to bulk phase surfactant. We investigated the compositional relationship between the monolayer and its reservoir using paper-supported wet bridges to transfer films from adsorbing dishes to clean surfaces on spreading dishes. Spreading films appear to form monolayers in the spreading dishes. We employed bovine lipid extract surfactant [BLES(chol)] containing [3H]DPPC and either [14C]palmitoyl, oleoyl-phosphatidylcholine (POPC), [14C]dipalmitoyl-phosphatidylglycerol (DPPG), [14C]palmitoyl, oleoyl-phosphatidylglycerol (POPG), or [14C]cholesterol. Radiolabeled phosphatidylglycerols were prepared using phospholipase D. The studies demonstrated that the [3H]DPPC-[14C] POPC ratios were the same in the prepared BLES dispersions as in Langmuir-Blodgett films, indicating a lack of DPPC selectivity during film formation. Furthermore, identical 3H-14C isotopic ratios were observed with DPPC and either 14C-labeled POPC, DPPG, POPG, or cholesterol in the original dispersions, the bulk phases in adsorption dish D1, and monolayers recovered from spreading dish D2. These relationships remained unperturbed with 2-fold increases in bulk concentrations in D1 and 10-fold variations in D1-D2 surface area. These results indicate adsorbed surfactant monolayers and their associated reservoirs possess similar lipid compositions and argue against selective adsorption of DPPC.  相似文献   

2.
Isotherms have been obtained near 37 degrees C for a series of repetitive compressions and expansions of monolayers that contain major components of lung surfactant. The minimum surface tension or maximum surface pressure which could be achieved under conditions of dynamic compression, and the rate of return of lipid from excluded phase to the monolayers were measured. Monolayers of pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or of DPPC plus 10 or 30 mol% of the calcium salt of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG) (POPG-Ca) achieved very high surface pressures or low surface tensions (near 0 mN m-1), but they showed no return of material from the collapse phases under the test conditions. Monolayers of POPG-Ca alone collapsed at relatively low surface pressures (high surface tensions), but showed good return of material from the collapse phase into the monolayer. Monolayers containing more complex mixtures of lipids (DPPC, phosphatidylglycerol (PG), unsaturated phosphatidylcholine (PC), cholesterol (chol] in ratios similar to those found in surfactant achieved minimum surface tensions intermediate between those of monolayers with less complex compositions. These more complex mixtures showed a better rate of return of lipids from the collapse phases to the monolayer than did simple DPPC-POPG mixtures. 31P-NMR and differential scanning calorimetric investigations of the mixture DPPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POP G/DPPG/chol (10:4:2:1:3) showed that in the bulk phase at 37 degrees C, it was in bilayers in the liquid-crystalline state.  相似文献   

3.
The feasibility of applying multiphoton excitation fluorescence microscopy-related techniques in planar membrane systems, such as lipid monolayers at the air-water interface (named Langmuir films), is presented and discussed in this paper. The non-linear fluorescence microscopy approach, allows obtaining spatially and temporally resolved information by exploiting the fluorescent properties of particular fluorescence probes. For instance, the use of environmental sensitive probes, such as LAURDAN, allows performing measurements using the LAURDAN generalized polarization function that in turn is sensitive to the local lipid packing in the membrane. The fact that LAURDAN exhibit homogeneous distribution in monolayers, particularly in systems displaying domain coexistence, overcomes a general problem observed when “classical” fluorescence probes are used to label Langmuir films, i.e. the inability to obtain simultaneous information from the two coexisting membrane regions. Also, the well described photoselection effect caused by excitation light on LAURDAN allows: (i) to qualitative infer tilting information of the monolayer when liquid condensed phases are present and (ii) to provide high contrast to visualize 3D membranous structures at the film's collapse pressure. In the last case, computation of the LAURDAN GP function provides information about lipid packing in these 3D structures. Additionally, LAURDAN GP values upon compression in monolayers were compared with those obtained in compositionally similar planar bilayer systems. At similar GP values we found, for both DOPC and DPPC, a correspondence between the molecular areas reported in monolayers and bilayers. This correspondence occurs when the lateral pressure of the monolayer is 26 ± 2 mN/m and 28 ± 3 mN/m for DOPC and DPPC, respectively.  相似文献   

4.
We investigate miscibility transitions of two different ternary lipid mixtures, DOPC/DPPC/Chol and POPC/PSM/Chol. In vesicles, both of these mixtures of an unsaturated lipid, a saturated lipid, and cholesterol form micron-scale domains of immiscible liquid phases for only a limited range of compositions. In contrast, in monolayers, both of these mixtures produce two distinct regions of immiscible liquid phases that span all compositions studied, the alpha-region at low cholesterol and the beta-region at high cholesterol. In other words, we find only limited overlap in miscibility phase behavior of monolayers and bilayers for the lipids studied. For vesicles at 25 degrees C, the miscibility phase boundary spans portions of both the monolayer alpha-region and beta-region. Within the monolayer beta-region, domains persist to high pressures, yet within the alpha-region, miscibility phase transition pressures always fall below 15 mN/m, far below the bilayer equivalent pressure of 32 mN/m. Approximately equivalent phase behavior is observed for monolayers of DOPC/DPPC/Chol and for monolayers of POPC/PSM/Chol. As expected, pressure-area isotherms of our ternary lipid mixtures yield smaller molecular area and compressibility for monolayers containing more saturated acyl chains and cholesterol. All monolayer experiments were conducted under argon. We show that exposure of unsaturated lipids to air causes monolayer surface pressures to decrease rapidly and miscibility transition pressures to increase rapidly.  相似文献   

5.
The physical properties of organized system (bilayers and monolayers at the air water interface) composed of bovine lipid extract surfactant (BLES) were studied using correlated experimental techniques. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN)-labeled giant unilamelar vesicles (mean diameter approximately 30 microm) composed of BLES were observed at different temperatures using two-photon fluorescence microscopy. As the temperature was decreased, dark domains (gel-like) appeared at physiological temperature (37 degrees C) on the surface of BLES giant unilamelar vesicles. The LAURDAN two-photon fluorescent images show that the gel-like domains span the lipid bilayer. Quantitative analysis of the LAURDAN generalized polarization function suggests the presence of a gel/fluid phase coexistence between 37 degrees C to 20 degrees C with low compositional and energetic differences between the coexisting phases. Interestingly, the microscopic scenario of the phase coexistence observed below 20 degrees C shows different domain's shape compared with that observed between 37 degrees C to 20 degrees C, suggesting the coexistence of two ordered but differently organized lipid phases on the bilayer. Epifluorescence microscopy studies of BLES monomolecular films doped with small amounts of fluorescent lipids showed the appearance and growth of dark domains (liquid condensed) dispersed in a fluorescent phase (liquid expanded) with shapes and sizes similar to those observed in BLES giant unilamelar vesicles. Our study suggests that bovine surfactant lipids can organize into discrete phases in monolayers or bilayers with equivalent temperature dependencies and may occur at physiological temperatures and surface pressures equivalent to those at the lung interface.  相似文献   

6.
Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and 31P and 2H solid-state NMR spectroscopy. SP-B59-80 forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B59-80 in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B59-80; in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B59-80 penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL4, a peptide mimetic of SP-B which was originally designed using SP-B59-80 as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment.  相似文献   

7.
Surfactant-like membranes containing the 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL4), have been clinically tested as a therapeutic agent for respiratory distress syndrome in premature infants. The aims of this study were to investigate the interactions between the KL4 peptide and lipid bilayers, and the role of both the lipid composition and KL4 structure on the surface adsorption activity of KL4-containing membranes. We used bilayers of three-component systems [1,2-dipalmitoyl-phosphatidylcholine/1-palmitoyl-2-oleoyl-phosphatidylglycerol/palmitic acid (DPPC/POPG/PA) and DPPC/1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/PA] and binary lipid mixtures of DPPC/POPG and DPPC/PA to examine the specific interaction of KL4 with POPG and PA. We found that, at low peptide concentrations, KL4 adopted a predominantly alpha-helical secondary structure in POPG- or POPC-containing membranes, and a beta-sheet structure in DPPC/PA vesicles. As the concentration of the peptide increased, KL4 interconverted to a beta-sheet structure in DPPC/POPG/PA or DPPC/POPC/PA vesicles. Ca2+ favored alpha<-->beta interconversion. This conformational flexibility of KL4 did not influence the surface adsorption activity of KL4-containing vesicles. KL4 showed a concentration-dependent ordering effect on POPG- and POPC-containing membranes, which could be linked to its surface activity. In addition, we found that the physical state of the membrane had a critical role in the surface adsorption process. Our results indicate that the most rapid surface adsorption takes place with vesicles showing well-defined solid/fluid phase co-existence at temperatures below their gel to fluid phase transition temperature, such as those of DPPC/POPG/PA and DPPC/POPC/PA. In contrast, more fluid (DPPC/POPG) or excessively rigid (DPPC/PA) KL4-containing membranes fail in their ability to adsorb rapidly onto and spread at the air-water interface.  相似文献   

8.
The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37°C, porcine surfactant demonstrated poorer activity at 3°C but was superior at 37°C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37°C, summer-active surfactant functions adequately at both 37°C and 3°C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from hibernation.  相似文献   

9.
The characteristics of the fluorescent dye, merocyanine 540 (MC-540), incorporated in monolayers of 1,2-dipalmitoyl-phosphatidylcholine (DPPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) were studied in different states of molecular packing. Conditions for phase separation in these monolayers were defined by their pressure/area (pi-A) isotherms. Within the liquid expanded (LE) and the liquid condensed (LC) coexisting phases of DPPC monolayers, low light level epifluorescence microscopy revealed 'dark' discoid domains embedded in a 'bright' matrix. Under the same conditions, and at temperatures as low as 12 degrees C, the pi-A isotherms of POPC demonstrate the existence of a single phase, and no fluorescent domains were observed. Fluorescence spectra of MC-540 labelled monolayers, recorded in different structural states, reveal three distinct emission peaks: a 572 nm peak, present for monolayer packing conditions at low surface pressures; a 585 nm peak, similar to that obtained from dye molecules in fluid phase lipid bilayers, and observed here within the respective area/molecule ranges of 54-62 A2 and 62-69 A2 for monolayers of DPPC and POPC with diminishing intensity at increasing surface pressure; and finally, a peak at 560 nm, which predominates in densely packed POPC monolayers. Our results are interpreted on the basis of dye partitioning between monolayer and subphase, and different orientations of the dye with respect to the monolayer in various structural states. The usefulness of MC-540 to differentiate lipid packing in cell membranes is discussed.  相似文献   

10.
The presence of cholesterol is critical in defining a dynamic lateral structure in pulmonary surfactant membranes. However, an excess of cholesterol has been associated with impaired surface activity of surfactant. It has also been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films. In this study, we analyzed the effect of SP-C on the thermodynamic properties of phospholipid membranes containing cholesterol, and the ability of lipid/protein complexes containing cholesterol to form and respread interfacial films capable of producing very low surface tensions upon repetitive compression-expansion cycling. SP-C modulates the effect of cholesterol to reduce the enthalpy associated with the gel-to-liquid-crystalline melting transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, as analyzed by differential scanning calorimetry. The presence of SP-C affects more subtly the effects of cholesterol on the thermotropic properties of ternary membranes, mimicking more closely the lipid composition of native surfactant, where SP-C facilitates the miscibility of the sterol. Incorporation of 1% or 2% SP-C (protein/phospholipid by weight) promotes almost instantaneous adsorption of suspensions of DPPC/palmitoyloleoylphospatidylcholine (POPC)/palmitoyloleoyl-phosphatidylglycerol (POPG) (50:25:15, w/w/w) into the air-liquid interface of a captive bubble, in both the absence and presence of cholesterol. However, cholesterol impairs the ability of SP-C-containing films to achieve very low surface tensions in bubbles subjected to compression-expansion cycling. Cholesterol also substantially impairs the ability of DPPC/POPC/POPG films containing 1% surfactant protein SP-B to mimic the interfacial behavior of native surfactant films, which are characterized by very low minimum surface tensions with only limited area change during compression and practically no compression-expansion hysteresis. However, the simultaneous presence of 2% SP-C practically restores the compression-expansion dynamics of cholesterol- and SP-B-containing films to the efficient behavior shown in the absence of cholesterol. This suggests that cooperation between the two proteins is required for lipid-protein films containing cholesterol to achieve optimal performance under physiologically relevant compression-expansion dynamics.  相似文献   

11.
SP-B(CTERM) is a cationic amphipathic helical peptide and functional fragment composed of residues 63 to 78 of surfactant protein B (SP-B). Static oriented and magic angle spinning solid state NMR, along with molecular dynamics simulation was used to investigate its structure, orientation, and depth in lipid bilayers of several compositions, namely POPC, DPPC, DPPC/POPC/POPG, and bovine lung surfactant extract (BLES). In all lipid environments the peptide was oriented parallel to the membrane surface. While maintaining this approximately planar orientation, SP-B(CTERM) exhibited a flexible topology controlled by subtle variations in lipid composition. SP-B(CTERM)-induced lipid realignment and/or conformational changes at the level of the head group were observed using (31)P solid-state NMR spectroscopy. Measurements of the depth of SP-B(CTERM) indicated the peptide center positions ~8? more deeply than the phosphate headgroups, a topology that may allow the peptide to promote functional lipid structures without causing micellization upon compression.  相似文献   

12.
Pulmonary surfactant provides for a lipid rich film at the lung air-water interface, which prevents alveolar collapse at the end of expiration. The films are likely enriched in the major surfactant component dipalmitoylphosphatidylcholine (DPPC), which, due to its saturated fatty acid chains, can withstand high surface pressures up to 70 mN/m, thereby reducing surface tension in that interface to very low values (close to 1 mN/m). Despite many experimental measurements in situ, as well as in vitro for native lung surfactant films, the exact mechanism by which other fluid lipid components of surfactant, in combination with surfactant proteins, allow for such low surface tension values to be reached is not well understood. We have performed molecular dynamics simulation of films composed of DPPC alone and in mixtures with other fluid and acidic lipid components of surfactant at the high densities relevant to the low surface tension regime. 10-50 ns simulations were performed with the software GROMACS, with 40-64 lipids molecules plus water, using 5 different lipid compositions and 7 different areas per lipid. The primary focus was to learn how differences in lipid composition affect the response of the monolayer to compression, such as the development of curvature or the loss of lipids to the exterior of the monolayer. The systems studied exhibit features of two of the major schools of thought of lung surfactant mechanisms, in that although unsaturated lipids did not appear to prevent the monolayers from achieving high surface pressure, POPG did appear to be selectively squeezed out of the DPPC/POPG monolayers at high lipid densities.  相似文献   

13.
Antimicrobial peptides (AMPs) act as host defenses against microbial pathogens. Here we investigate the interactions of SVS-1 (KVKVKVKVdPlPTKVKVKVK), an engineered AMP and anti-cancer β-hairpin peptide, with lipid bilayers using spectroscopic studies and atomistic molecular dynamics simulations. In agreement with literature reports, simulation and experiment show preferential binding of SVS-1 peptides to anionic over neutral bilayers. Fluorescence and circular dichroism studies of a Trp-substituted SVS-1 analogue indicate, however, that it will bind to a zwitterionic DPPC bilayer under high-curvature conditions and folds into a hairpin. In bilayers formed from a 1:1 mixture of DPPC and anionic DPPG lipids, curvature and lipid fluidity are also observed to promote deeper insertion of the fluorescent peptide. Simulations using the CHARMM C36m force field offer complementary insight into timescales and mechanisms of folding and insertion. SVS-1 simulated at an anionic mixed POPC/POPG bilayer folded into a hairpin over a microsecond, the final stage in folding coinciding with the establishment of contact between the peptide's valine sidechains and the lipid tails through a “flip and dip” mechanism. Partial, transient folding and superficial bilayer contact are seen in simulation of the peptide at a zwitterionic POPC bilayer. Only when external surface tension is applied does the peptide establish lasting contact with the POPC bilayer. Our findings reveal the influence of disruption to lipid headgroup packing (via curvature or surface tension) on the pathway of binding and insertion, highlighting the collaborative effort of electrostatic and hydrophobic interactions on interaction of SVS-1 with lipid bilayers.  相似文献   

14.
This work comprises a structural and dynamical study of monolayers and bilayers composed of native pulmonary surfactant from mice. Spatially resolved information was obtained using fluorescence (confocal, wide field and two photon excitation) and atomic force microscopy methods. Lipid mass spectrometry experiments were also performed in order to obtain relevant information on the lipid composition of this material. Bilayers composed of mice pulmonary surfactant showed coexistence of distinct domains at room temperature, with morphologies and lateral packing resembling the coexistence of liquid ordered (lo)/liquid disordered (ld)-like phases reported previously in porcine lung surfactant. Interestingly, the molar ratio of saturated (mostly DPPC)/non-saturated phospholipid species and cholesterol measured in the innate material corresponds with that of a DOPC/DPPC/cholesterol mixture showing lo/ld phase coexistence at a similar temperature. This suggests that at quasi-equilibrium conditions, key lipid classes in this complex biological material are still able to produce the same scaffold observed in relevant but simpler model lipid mixtures. Also, robust structural and dynamical similarities between mono- and bi-layers composed of mice pulmonary surfactant were observed when the monolayers reach a surface pressure of 30 mN/m. This value is in line with theoretically predicted and recently measured surface pressures, where the monolayer–bilayer equivalence occurs in samples composed of single phospholipids. Finally, squeezed out material attached to pulmonary surfactant monolayers was observed at surface pressures near the beginning of the monolayer reversible exclusion plateau (~ 40 mN/m). Under these conditions this material adopts elongated tubular shapes and displays ordered lateral packing as indicated by spatially resolved LAURDAN GP measurements.  相似文献   

15.
Adhesion and spreading of negatively charged unilamellar vesicles composed of POPG/POPC and DPPG/DPPC on positively charged self-assembly monolayers of 11-amino-1-undecanethiol were monitored by means of thickness shear mode (TSM) resonators with a fundamental frequency of 5 MHz. Changes of frequency and motional resistance upon vesicle adsorption were recorded as a function of surface charge density and lyotropic phase state of the lipids. From the readout of the TSM resonator, changes of the shape of the vesicles as well as the formation of supported lipid bilayers can be inferred in a quantitative manner. Increasing surface charge densities on the vesicles, which are tunable by the POPG content, led to decreasing frequency and resistance changes. At very high PG content, a lower limit of 3–12 Hz was found, indicative of the formation of planar bilayers due to vesicle rupture induced by the strong electrostatic interaction forces. Vesicles composed of DPPG/DPPC were less susceptible to deformation and rupture, a fact that can be attributed to the higher bending rigidity of DPPG/DPPC liposomes. More than 70 mol% of DPPG were needed to induce adhesion-controlled rupture of surface-attached vesicles, while only 30–50% of POPG were sufficient to form planar lipid bilayers on the quartz.  相似文献   

16.
Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1-5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA(2) (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from hydrolysis mediated by multiple sPLA(2) in both vesicles (alveolar subphase) and monomolecular films (air-liquid interface).  相似文献   

17.
A molecular dynamics simulation study of four lipid bilayers with inserted trans-membrane helical fragment of epithelial growth factor (EGF) receptor (EGF peptide) was performed. The lipid bilayers differ in their lipid composition and consist of (i) unsaturated phosphatidylcholine (palmitoyloleoylphosphatidylcholine, POPC), (ii) POPC and 20 mol% of cholesterol (Chol), (iii) sphingomyelin (SM) and 20 mol% of Chol, and (iv) SM and 50 mol% of Chol. Only 1 out of 26 residues in the EGF-peptide sequence is polar (Thr). The hydrophobic thickness of each bilayer is different but shorter than the length of the peptide and so, due to hydrophobic mismatch, the inserted peptide is tilted in each bilayer. Additionally, in the POPC bilayer, which is the thinnest, the peptide loses its helical structure in a short three-amino acid fragment. This facilitates bending of the peptide and burying all hydrophobic amino acids inside the membrane core (Figure 1(b)). Bilayer lipid composition affects interactions between the peptide and lipids in the membrane core. Chol increases packing of atoms relative to the peptide side chains, and thus increases van der Waals interactions. On average, the packing around the peptide is higher in SM-based bilayers than POPC-based bilayers but for certain amino acids, packing depends on their position relative to the bilayer center. In the bilayer center, packing is higher in POPC-based bilayers, while in regions closer to the interface packing is higher in SM-based bilayers. In general, amino acids with larger side chains interact strongly with lipids, and thus the peptide sequence is important for the pattern of interactions at different membrane depths. This pattern closely resembles the shape of recently published lateral pressure profiles [Ollila et alJ. Struct. Biol. DOI:10.1016/j.jsb.2007.01.012].  相似文献   

18.
The captive bubble tensiometer was employed to study interactions of phospholipid (PL) mixtures of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) at 50 microg/ml with physiological levels of the surfactant protein (SP) A SP-B, and SP-C alone and in combination at 37 degrees C. All surfactant proteins enhanced lipid adsorption to equilibrium surface tension (gamma), with SP-C being most effective. Kinetics were consistent with the presence of two adsorption phases. Under the conditions employed, SP-A did not affect the rate of film formation in the presence of SP-B or SP-C. Little difference in gamma(min) was observed between the acidic POPG and the neutral POPC systems with SP-B or SP-C with and without SP-A. However, gamma(max) was lower with the acidic POPG system during dynamic, but not during quasi-static, cycling. Considerably lower compression ratios were required to generate low gamma(min) values with SP-B than SP-C. DPPC-POPG-SP-B was superior to the neutral POPC-SP-B system. Although SP-A had little effect on film formation with SP-B, surface activity during compression was enhanced with both PL systems. In the presence of SP-C, lower compression ratios were required with the acidic system, and with this mixture, SP-A addition adversely affected surface activity. The results suggest specific interactions between SP-B and phosphatidylglycerol, and between SP-B and SP-A. These observations are consistent with the presence of a surface-associated surfactant reservoir which is involved in generating low gamma during film compression and lipid respreading during film expansion.  相似文献   

19.
The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger.  相似文献   

20.
Surface behaviour of Maculatin 1.1 and Citropin 1.1 antibiotic peptides have been studied using the Langmuir monolayer technique in order to understand the peptide-membrane interaction proposed as critical for cellular lysis. Both peptides have a spontaneous adsorption at the air-water interface, reaching surface potentials similar to those obtained by direct spreading. Collapse pressures (Pi(c), stability to lateral compression), molecular areas at maximal packing and surface potentials (DeltaV) obtained from compression isotherms of both pure peptide monolayers are characteristic of peptides adopting mainly alpha-helical structure at the interface. The stability of Maculatin monolayers depended on the subphase and increased when pH was raised. In an alkaline environment, Maculatin exhibits a molecular reorganization showing a reproducible discontinuity in the Pi-A compression isotherm. Both peptides in lipid films with the zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) showed an immiscible behaviour at all lipid-peptide proportions studied. By contrast, in films with the anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG), the peptides showed miscible behaviour when the peptides represented less than 50% of total surface area. Additional penetration experiments also demonstrated that both peptides better interact with POPG compared with POPC monolayers. This lipid preference is discussed as a possible explanation of their antibiotic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号