首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Venous valve incompetence has been implicated in diseases ranging from chronic venous insufficiency (CVI) to intracranial venous hypertension. However, while the mechanical properties of venous valve leaflet tissues are central to CVI biomechanics and mechanobiology, neither stress–strain curves nor tangent moduli have been reported. Here, equibiaxial tensile mechanical tests were conducted to assess the tangent modulus, strength and anisotropy of venous valve leaflet tissues from bovine jugular veins. Valvular tissues were stretched to 60% strain in both the circumferential and radial directions, and leaflet tissue stress–strain curves were generated for proximal and distal valves (i.e., valves closest and furthest from the right heart, respectively). Toward linking mechanical properties to leaflet microstructure and composition, Masson’s trichrome and Verhoeff–Van Gieson staining and collagen assays were conducted. Results showed: (1) Proximal bovine jugular vein venous valves tended to be bicuspid (i.e., have two leaflets), while distal valves tended to be tricuspid; (2) leaflet tissues from proximal valves exhibited approximately threefold higher peak tangent moduli in the circumferential direction than in the orthogonal radial direction (i.e., proximal valve leaflet tissues were anisotropic; \(p<0.01\)); (3) individual leaflets excised from the same valve apparatus appeared to exhibit different mechanical properties (i.e., intra-valve variability); and (4) leaflets from distal valves exhibited a trend of higher soluble collagen concentrations than proximal ones (i.e., inter-valve variability). To the best of the authors’ knowledge, this is the first study reporting biaxial mechanical properties of venous valve leaflet tissues. These results provide a baseline for studying venous valve incompetence at the tissue level and a quantitative basis for prosthetic venous valve design.  相似文献   

2.
Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. Although exact causes and mechanisms of AV calcification are unclear, previous studies suggest that mechanical forces play a role. Since calcium deposits occur almost exclusively on the aortic surfaces of AV leaflets, it has been hypothesized that adverse patterns of fluid shear stress on the aortic surface of AV leaflets promote calcification. The current study characterizes AV leaflet aortic surface fluid shear stresses using Laser Doppler velocimetry and an in vitro pulsatile flow loop. The valve model used was a native porcine valve mounted on a suturing ring and preserved using 0.15% glutaraldehyde solution. This valve model was inserted in a mounting chamber with sinus geometries, which is made of clear acrylic to provide optical access for measurements. To understand the effects of hemodynamics on fluid shear stress, shear stress was measured across a range of conditions: varying stroke volumes at the same heart rate and varying heart rates at the same stroke volume. Systolic shear stress magnitude was found to be much higher than diastolic shear stress magnitude due to the stronger flow in the sinuses during systole, reaching up to 20 dyn/cm2 at mid-systole. Upon increasing stroke volume, fluid shear stresses increased due to stronger sinus fluid motion. Upon increasing heart rate, fluid shear stresses decreased due to reduced systolic duration that restricted the formation of strong sinus flow. Significant changes in the shear stress waveform were observed at 90 beats/min, most likely due to altered leaflet dynamics at this higher heart rate. Overall, this study represents the most well-resolved shear stress measurements to date across a range of conditions on the aortic side of the AV. The data presented can be used for further investigation to understand AV biological response to shear stresses.  相似文献   

3.
In aortic valve sparing surgery, cusp prolapse is a common cause of residual aortic insufficiency. To correct cusp pathology, native leaflets of the valve frequently require adjustment which can be performed using a variety of described correction techniques, such as central or commissural plication, or resuspension of the leaflet free margin. The practical question then arises of determining which surgical technique provides the best valve performance with the most physiologic coaptation. To answer this question, we created a new finite element model with the ability to simulate physiologic function in normal valves, and aortic insufficiency due to leaflet prolapse in asymmetric, diseased or sub-optimally repaired valves. The existing leaflet correction techniques were simulated in a controlled situation, and the performance of the repaired valve was quantified in terms of maximum leaflets stress, valve orifice area, valve opening and closing characteristics as well as total coaptation area in diastole. On the one hand, the existing leaflet correction techniques were shown not to adversely affect the dynamic properties of the repaired valves. On the other hand, leaflet resuspension appeared as the best technique compared to central or commissural leaflet plication. It was the only method able to achieve symmetric competence and fix an individual leaflet prolapse while simultaneously restoring normal values for mechanical stress, valve orifice area and coaptation area.  相似文献   

4.
Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact causes and mechanisms of AV calcification are unclear, although previous studies suggest that mechanical forces play a role. It has been clinically demonstrated that calcification preferentially occurs on the aortic surface of the AV. This is hypothesized to be due to differences in the mechanical environments on the two sides of the valve. It is thus necessary to characterize fluid shear forces acting on both sides of the leaflet to test this hypothesis. The current study is one of two studies characterizing dynamic shear stress on both sides of the AV leaflets. In the current study, shear stresses on the ventricular surface of the AV leaflets were measured experimentally on two prosthetic AV models with transparent leaflets in an in vitro pulsatile flow loop using two-component Laser Doppler Velocimetry (LDV). Experimental measurements were utilized to validate a theoretical model of AV ventricular surface shear stress based on the Womersley profile in a straight tube, with corrections for the opening angle of the valve leaflets. This theoretical model was applied to in vivo data based on MRI-derived volumetric flow rates and valve dimension obtained from the literature. Experimental results showed that ventricular surface shear stress was dominated by the streamwise component. The systolic shear stress waveform resembled a half-sinusoid during systole and peaks at 64–71 dyn/cm2, and reversed in direction at the end of systole for 15–25?ms, and reached a significant negative magnitude of 40–51 dyn/cm2. Shear stresses from the theoretical model applied to in vivo data showed that shear stresses peaked at 77–92 dyn/cm2 and reversed in direction for substantial period of time (108–110?ms) during late systole with peak negative shear stress of 35–38 dyn/cm2.  相似文献   

5.
Blood damage and thrombosis are major complications that are commonly seen in patients with implanted mechanical heart valves. For this in vitro study, we isolated the closing phase of a bileaflet mechanical heart valve to study near valve fluid velocities and stresses. By manipulating the valve housing, we gained optical access to a previously inaccessible region of the flow. Laser Doppler velocimetry and particle image velocimetry were used to characterize the flow regime and help to identify the key design characteristics responsible for high shear and rotational flow. Impact of the closing mechanical leaflet with its rigid housing produced the highest fluid stresses observed during the cardiac cycle. Mean velocities as high as 2.4 m/s were observed at the initial valve impact. The velocities measured at the leaflet tip resulted in sustained shear rates in the range of 1500-3500 s(-1), with peak values on the order of 11,000-23,000 s(-1). Using velocity maps, we identified regurgitation zones near the valve tip and through the central orifice of the valve. Entrained flow from the transvalvular jets and flow shed off the leaflet tip during closure combined to generate a dominant vortex posterior to both leaflets after each valve closing cycle. The strength of the peripheral vortex peaked within 2 ms of the initial impact of the leaflet with the housing and rapidly dissipated thereafter, whereas the vortex near the central orifice continued to grow during the rebound phase of the valve. Rebound of the leaflets played a secondary role in sustaining closure-induced vortices.  相似文献   

6.
The bicuspid aortic valve (BAV) is a common congenital malformation of the aortic valve (AV) affecting 1% to 2% of the population. The BAV is predisposed to early degenerative calcification of valve leaflets, and BAV patients constitute 50% of AV stenosis patients. Although evidence shows that genetic defects can play a role in calcification of the BAV leaflets, we hypothesize that drastic changes in the mechanical environment of the BAV elicit pathological responses from the valve and might be concurrently responsible for early calcification. An in vitro model of the BAV was constructed by surgically manipulating a native trileaflet porcine AV. The BAV valve model and a trileaflet AV (TAV) model were tested in an in vitro pulsatile flow loop mimicking physiological hemodynamics. Laser Doppler velocimetry was used to make measurements of fluid shear stresses on the leaflet of the valve models using previously established methodologies. Furthermore, particle image velocimetry was used to visualize the flow fields downstream of the valves and in the sinuses. In the BAV model, flow near the leaflets and fluid shear stresses on the leaflets were much more unsteady than for the TAV model, most likely due to the moderate stenosis in the BAV and the skewed forward flow jet that collided with the aorta wall. This additional unsteadiness occurred during mid- to late-systole and was composed of cycle-to-cycle magnitude variability as well as high-frequency fluctuations about the mean shear stress. It has been demonstrated that the BAV geometry can lead to unsteady shear stresses under physiological flow and pressure conditions. Such altered shear stresses could play a role in accelerated calcification in BAVs.  相似文献   

7.
While the mechanical behaviors of the fibrosa and ventricularis layers of the aortic valve (AV) leaflet are understood, little information exists on their mechanical interactions mediated by the GAG-rich central spongiosa layer. Parametric simulations of the interlayer interactions of the AV leaflets in flexure utilized a tri-layered finite element (FE) model of circumferentially oriented tissue sections to investigate inter-layer sliding hypothesized to occur. Simulation results indicated that the leaflet tissue functions as a tightly bonded structure when the spongiosa effective modulus was at least 25 % that of the fibrosa and ventricularis layers. Novel studies that directly measured transmural strain in flexure of AV leaflet tissue specimens validated these findings. Interestingly, a smooth transmural strain distribution indicated that the layers of the leaflet indeed act as a bonded unit, consistent with our previous observations (Stella and Sacks in J Biomech Eng 129:757–766, 2007) of a large number of transverse collagen fibers interconnecting the fibrosa and ventricularis layers. Additionally, when the tri-layered FE model was refined to match the transmural deformations, a layer-specific bimodular material model (resulting in four total moduli) accurately matched the transmural strain and moment-curvature relations simultaneously. Collectively, these results provide evidence, contrary to previous assumptions, that the valve layers function as a bonded structure in the low-strain flexure deformation mode. Most likely, this results directly from the transverse collagen fibers that bind the layers together to disable physical sliding and maintain layer residual stresses. Further, the spongiosa may function as a general dampening layer while the AV leaflets deforms as a homogenous structure despite its heterogeneous architecture.  相似文献   

8.
Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact cause and mechanism of the progression of AV calcification is unknown, although mechanical forces have been known to play a role. It is thus important to characterize the mechanical environment of the AV. In the current study, we establish a methodology of measuring shear stresses experienced by the aortic surface of the AV leaflets using an in vitro valve model and adapting the laser Doppler velocimetry (LDV) technique. The valve model was constructed from a fresh porcine aortic valve, which was trimmed and sutured onto a plastic stented ring, and inserted into an idealized three-lobed sinus acrylic chamber. Valve leaflet location was measured by obtaining the location of highest back-scattered LDV laser light intensity. The technique of performing LDV measurements near to biological surfaces as well as the leaflet locating technique was first validated in two phantom flow systems: (1) steady flow within a straight tube with AV leaflet adhered to the wall, and (2) steady flow within the actual valve model. Dynamic shear stresses were then obtained by applying the techniques on the valve model in a physiologic pulsatile flow loop. Results show that aortic surface shear stresses are low during early systole (<5 dyn/cm2) but elevated to its peak during mid to late systole at about 18-20 dyn/cm2. Low magnitude shear stress (<5 dyn/cm2) was observed during early diastole and dissipated to zero over the diastolic duration. Systolic shear stress was observed to elevate only with the formation of sinus vortex flow. The presented technique can also be used on other in vitro valve models such as congenitally geometrically malformed valves, or to investigate effects of hemodynamics on valve shear stress. Shear stress data can be used for further experiments investigating effects of fluid shear stress on valve biology, for conditioning tissue engineered AV, and to validate numerical simulations.  相似文献   

9.
The motion of both mitral cusps and the presence of valvular regurgitation during ventricular contractions were investigated in seven experiments on dogs in which radiopaque markers had been sutured to the cusps and the valve annulus 1-32 wk before the studies. Cineangiograms of the left ventricle were obtained during ventricular ectopic beats, interposed throughout the cardiac cycle (20-99% of cycle length) and during induced variations in the P-R interval (0-200 ms). Mitral regurgitation was observed only during a) weak, early ectopic beats (peak pressure below 34 mmHg) which were incapable of closing the cusps and b) when ventricular contractions suddenly interrupted normal leaflet motion toward the ventricle, during three well-defined periods of diastole (diastolic valve opening, diastolic rebound, and atrial opening). Valve closure following sudden reversal of cusp opening was slow and the leaflets often did not arrive simultaneously at their closed positions. These findings suggest that sudden interruption of leaflet opening by ventricular contractions is an important mechanism of transient mitral regurgitation in the normal heart.  相似文献   

10.
Heterogeneities in structure and stress within heart valve leaflets are of significant concern to their functional physiology, as they affect how the tissue constituents remodel in response to pathological and non-pathological (e.g. exercise, pregnancy) alterations in cardiac function. Indeed, valve interstitial cells (VICs) are known to synthesize and degrade leaflet extracellular matrix (ECM) components in a manner specific to their local micromechanical environment. Quantifying local variations in ECM structure and stress is thus necessary to understand homeostatic valve maintenance as well as to develop predictive models of disease progression and post-surgical outcomes. In the aortic valve (AV), transmural variations in stress have previously been investigated by modeling the leaflet as a composite of contiguous but mechanically distinct layers. Based on previous findings about the bonded nature of these layers (Buchanan and Sacks, BMMB, 2014), we developed a more generalized structural constitutive model by treating the leaflet as a functionally graded material (FGM), whose properties vary continuously over the thickness. We informed the FGM model using high-resolution morphological measurements, which demonstrated that the composition and fiber structure change gradually over the thickness of the AV leaflet. For validation, we fit the model against an extensive database of whole-leaflet and individual-layer mechanical responses. The FGM model predicted large stress variations both between and within the leaflet layers at end-diastole, with low-collagen regions bearing significant radial stress. These novel results suggest that the continually varying structure of the AV leaflet has an important purpose with regard to valve function and tissue homeostasis.  相似文献   

11.
One of the major failure modes of bioprosthetic heart valves (BHVs) is noncalcific structural deterioration due to fatigue of the tissue leaflets; yet, the mechanisms of fatigue are not well understood. BHV durability is primarily assessed based on visual inspection of the leaflets following accelerated wear testing. In this study, we developed a computational framework to simulate BHV leaflet fatigue, which is both efficient and quantitative, making it an attractive alternative to traditional accelerated wear testing. We utilize a phenomenological soft tissue fatigue damage model developed previously to describe the stress softening and permanent set of the glutaraldehyde-treated bovine pericardium leaflets in BHVs subjected to cyclic loading. A parametric study was conducted to determine the effects of altered leaflet and stent elastic properties on the fatigue of the leaflets. The simulation results show that heterogeneity of the leaflet elastic properties, poor leaflet coaptation, and little stent-tip deflection may accelerate leaflet fatigue, which agrees with clinical findings. Therefore, the developed framework may be an invaluable tool for evaluating leaflet durability in new tissue valve designs, including traditional BHVs as well as new transcatheter valves.  相似文献   

12.
目前临床使用的各种机械心脏瓣膜的主要问题是血栓栓塞和与抗凝治疗有关的出血,其缺陷在于瓣膜开启时,碟片和支架将瓣膜的整个血流通道分隔成三至四个较小的血流通道。在这种受阻隔的血流通宫,形成容易诱发血栓的高剪应力区、紊流和滞流区。我们研制的两种机械心脏瓣膜在瓣膜开启时,没有任何支架和碟片分隔瓣膜的血流通道,使血流与天然心脏瓣膜中的相类似,可减少对血液的危害,从而可减少换瓣病人对抗凝治疗的依赖程度。  相似文献   

13.
Dual camera stereo photogrammetry (DCSP) was applied to investigate the leaflet motion of bioprosthetic heart valves (BHVs) in a physiologic pulse flow loop (PFL). A 25-mm bovine pericardial valve was installed in the aortic valve position of the PFL, which was operated at a pulse rate of 70 beats/min and a cardiac output of 5 l/min. The systolic/diastolic aortic pressure was maintained at 120/80 mmHg to mimic the physiologic load experienced by the aortic valve. The leaflet of the test valve was marked with 80 India ink dots to form a fan-shaped matrix. From the acquired image sequences, 3-D coordinates of the marker matrix were derived and hence the surface contour, local mean and Gaussian curvatures at each opening and closing phase during one cardiac cycle were reconstructed. It is generally believed that the long-term failure rate of BHV is related to the uneven distribution of mechanical stresses occurring in the leaflet material during opening and closing. Unfortunately, a quantitative analysis of the leaflet motion under physiological conditions has not been reported. The newly developed technique permits frame-by-frame mapping of the leaflet surface, which is essential for dynamic analysis of stress-strain behavior in BHV.  相似文献   

14.
Bovine pericardium, stabilized with glutaraldehyde, is used widely in the construction of heart valve substitutes, but the design and construction of valve substitutes from this material are empirically based. Collagenous tissue can support tension, but experimental evidence indicates that flexure-induced compressive stresses can lead to fatigue failure. This study uses experimental results obtained from cyclic uniaxial load tests to predict the type and magnitude of operational stresses which occur in pericardial heterograft leaflets. Both Young's modulus and Poisson's ratio varied with uniaxial loading in pericardium, chemically modified free of tension. Leaflet stresses were analysed by using effective incremental representations of these parameters. In leaflets with unrestricted rotation at the point of attachment to the stent, the mid-plane tensions always exceeded the bending stresses, and no zones of leaflet compression were predicted. In contrast, with totally restricted leaflet rotation induced by clamping (possibly between a male and female frame) the bending stresses were greater than the mid-plane tensions at the hinge line and significant compressive stresses were predicted at this site. If elastic boundary conditions were introduced at the stent (possibly by wrapping the stent in pericardium) then the compressive stresses were reduced as the degree of elasticity was increased. Glutaraldehyde fixation of the pericardium under load produced a stiffer material; higher compressive stresses at the stent and significant increases in total stress were predicted for this tissue. The application of elevated pressure loading also increased the compressive and total stresses in the leaflet. Finally, it was shown that bicuspid leaflets were likely to experience higher stresses than tricuspid leaflets. This simple stress analysis should help valve designers of pericardial heterografts to identify those conditions which lead to tissue compression, high total stress, and ultimately material fatigue.  相似文献   

15.
Stresses in the closed mitral valve: a model study   总被引:2,自引:1,他引:1  
In the present model study on the closed mitral valve, tensile force in the chordae tendineae is related to transvalvular pressure using a mathematical model of mechanics of the closed mitral valve. Circumferential stress as well as bending stress in the valve leaflets were neglected. Without precisely knowing the mechanical properties of the leaflet material, geometry of the leaflets was estimated by applying Laplace's law, which relates leaflet stress to leaflet curvature. Independent of shape of the mitral valve orifice, under all circumstances tensile force in the chordae tendineae was calculated to be equal or greater than half the force exerted on the mitral valve orifice by the transvalvular pressure.  相似文献   

16.
We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is approximately 0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (G(circ-rad)) and elastic moduli in both the commisure-commisure (E(circ)) and radial (E(rad)) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (+/-SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: G(circ-rad) = 121 +/- 22 N/mm2, E(circ) = 43 +/- 18 N/mm2, and E(rad) = 11 +/- 3 N/mm2 (E(circ) > E(rad), P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.  相似文献   

17.
The aortic valve (AV) leaflet contains a heterogeneous interstitial cell population composed predominantly of myofibroblasts, which contain both fibroblast and smooth muscle cell characteristics. The focus of the present study was to examine aortic valve interstitial cell (AVIC) contractile behavior within the intact leaflet tissue. Circumferential strips of porcine AV leaflets were mechanically tested under flexure, with the AVIC maintained in the normal, contracted, and contraction-inhibited states. Leaflets were flexed both with (WC) and against (AC) the natural leaflet curvature, both before and after the addition of 90 mM KCl to elicit cellular contraction. In addition, a natural basal tonus was also demonstrated by treating the leaflets with 10 microM thapsigargin to completely inhibit AVIC contraction. Results revealed a 48% increase in leaflet stiffness with AVIC contraction (from 703 to 1040 kPa, respectively) when bent in the AC direction (p=0.004), while the WC direction resulted only in 5% increase (from 491 to 516.5 kPa, respectively--not significant) in leaflet stiffness in the active state. Also, the loss of basal tonus of the AVIC population with thapsigargin treatment resulted in 76% (AC, p=0.001) and 54% (WC, p=0.036) decreases in leaflet stiffness at 5 mM KCl levels, while preventing contraction with the addition of 90 mM KCl as expected. We speculate that the observed layer dependent effects of AVIC contraction are primarily due to varying ECM mechanical properties in the ventricularis and fibrosa layers. Moreover, while we have demonstrated that AVIC contractile ability is a significant contributor to AV leaflet bending stiffness, it most likely serves a role in maintaining AV leaflet tissue homeostasis that has yet to be elucidated.  相似文献   

18.
We carry out three-dimensional high-resolution numerical simulations of a bileaflet mechanical heart valve under physiologic pulsatile flow conditions implanted at different orientations in an anatomic aorta obtained from magnetic resonance imaging (MRI) of a volunteer. We use the extensively validated for heart valve flow curvilinear-immersed boundary (CURVIB) fluid-structure interaction (FSI) solver in which the empty aorta is discretized with a curvilinear, aorta-conforming grid while the valve is handled as an immersed boundary. The motion of the valve leaflets are calculated through a strongly coupled FSI algorithm implemented in conjunction with the Aitken convergence acceleration technique. We perform simulations for three valve orientations, which differ from each other by 45 deg and compare the results in terms of leaflet motion and flow field. We show that the valve implanted symmetrically relative to the symmetry plane of the ascending aorta curvature exhibits the smallest overall asymmetry in the motion of its two leaflets and lowest rebound during closure. Consequently, we hypothesize that this orientation is beneficial to reduce the chance of intermittent regurgitation. Furthermore, we find that the valve orientation does not significantly affect the shear stress distribution in the aortic lumen, which is in agreement with previous studies.  相似文献   

19.
Computational characterizations of aortic valve hemodynamics have typically discarded the effects of coronary flow. The objective of this study was to complement our previous fluid–structure interaction aortic valve model with a physiologic coronary circulation model to quantify the impact of coronary flow on aortic sinus hemodynamics and leaflet wall shear stress (WSS). Coronary flow suppressed vortex development in the two coronary sinuses and altered WSS magnitude and directionality on the three leaflets, with the most substantial differences occurring in the belly and tip regions.  相似文献   

20.
This work was concerned with the numerical simulation of the behaviour of aortic valves whose material can be modelled as non-linear elastic anisotropic. Linear elastic models for the valve leaflets with parameters used in previous studies were compared with hyperelastic models, incorporating leaflet anisotropy with pronounced stiffness in the circumferential direction through a transverse isotropic model. The parameters for the hyperelastic models were obtained from fits to results of orthogonal uniaxial tensile tests on porcine aortic valve leaflets. The computational results indicated the significant impact of transverse isotropy and hyperelastic effects on leaflet mechanics; in particular, increased coaptation with peak values of stress and strain in the elastic limit. The alignment of maximum principal stresses in all models follows approximately the coarse collagen fibre distribution found in aortic valve leaflets. The non-linear elastic leaflets also demonstrated more evenly distributed stress and strain which appears relevant to long-term scaffold stability and mechanotransduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号