共查询到20条相似文献,搜索用时 15 毫秒
1.
Varus knee alignment is a risk factor for medial knee osteoarthritis and is associated with high knee adduction moments. Therefore, reducing the knee adduction moment in varus-aligned individuals with otherwise healthy knees may reduce their risk for developing osteoarthritis. A gait modification that improves dynamic knee alignment may reduce the adduction moment, and systematic training may lead to more natural-feeling and less effortful execution of this pattern. To test these hypotheses, eight healthy, varus-aligned individuals underwent a gait modification protocol. Real-time feedback of dynamic knee alignment was provided over eight training sessions, using a fading paradigm. Natural and modified gait were assessed post-training and after 1 month, and compared to pre-training natural gait. The knee adduction moment, as well as hip adduction, hip internal rotation and knee adduction angles were evaluated. At each training session, subjects rated how effortful and natural-feeling the modified pattern was to execute. Post-training, the modified pattern demonstrated an 8° increase in hip internal rotation and 3° increase in hip adduction. Knee adduction decreased 2°, and the knee adduction moment decreased 19%. Natural gait did not differ between the three visits, nor did the modified gait pattern between the post-training and 1 month visits. The modified pattern felt more natural and required less effort after training. Based on these results, gait retraining to improve dynamic knee alignment resulted in significant reductions in the knee adduction moment, primarily through hip internal rotation. Further, systematic training led to more natural-feeling and less effortful execution of the gait pattern. 相似文献
2.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle. 相似文献
3.
The purpose of this study was to evaluate gait retraining for reducing the knee adduction moment. Our primary objective was to determine whether subject-specific altered gaits aimed at reducing the knee adduction moment by 30% or more could be identified and adopted in a single session through haptic (touch) feedback training on multiple kinematic gait parameters. Nine healthy subjects performed gait retraining, in which data-driven models specific to each subject were determined through experimental trials and were used to train novel gaits involving a combination of kinematic changes to the tibia angle, foot progression and trunk sway angles. Wearable haptic devices were used on the back, knee and foot for real-time feedback. All subjects were able to adopt altered gaits requiring simultaneous changes to multiple kinematic parameters and reduced their knee adduction moments by 29-48%. Analysis of single parameter gait training showed that moving the knee medially by increasing tibia angle, increasing trunk sway and toeing in all reduced the first peak of the knee adduction moment with tibia angle changes having the most dramatic effect. These results suggest that individualized data-driven gait retraining may be a viable option for reducing the knee adduction moment as a treatment method for early-stage knee osteoarthritis patients with sufficient sensation, endurance and motor learning capabilities. 相似文献
4.
Erhart JC Mündermann A Elspas B Giori NJ Andriacchi TP 《Journal of biomechanics》2008,41(12):2720-2725
The purpose of this study was to evaluate the effectiveness of variable-stiffness shoes in lowering the peak external knee adduction moment during walking in subjects with symptomatic medial compartment knee osteoarthritis. The influence on other lower extremity joints was also investigated. The following hypotheses were tested: (1) variable-stiffness shoes will lower the knee adduction moment in the symptomatic knee compared to control shoes; (2) reductions in knee adduction moment will be greater at faster speeds; (3) subjects with higher initial knee adduction moments in control shoes will have greater reductions in knee adduction moment with the intervention shoes; and (4) variable-stiffness shoes will cause secondary changes in the hip and ankle frontal plane moments. Seventy-nine individuals were tested at self-selected slow, normal, and fast speeds with a constant-stiffness control shoe and a variable-stiffness intervention shoe. Peak moments for each condition were assessed using a motion capture system and force plate. The intervention shoes reduced the peak knee adduction moment compared to control at all walking speeds, and reductions increased with increasing walking speed. The magnitude of the knee adduction moment prior to intervention explained only 11.9% of the variance in the absolute change in maximum knee adduction moment. Secondary changes in frontal plane moments showed primarily reductions in other lower extremity joints. This study showed that the variable-stiffness shoe reduced the knee adduction moment in subjects with medial compartment knee osteoarthritis without the discomfort of a fixed wedge or overloading other joints, and thus can potentially slow the progression of knee osteoarthritis. 相似文献
5.
Variable stiffness shoes that have a stiffer lateral than medial sole may reduce the external knee adduction moment (EKAM) and pain during walking in patients with medial compartment knee osteoarthritis (OA). However, the mechanism by which EKAM may be reduced in the OA knee with this intervention remains unclear. Three hypotheses were tested in this study: (1) The reduction in EKAM during walking with the variable stiffness shoe is associated with a reduction in GRF magnitude and/or (2) frontal plane lever arm. (3) A reduction in frontal plane lever arm occurs either by moving the center of pressure laterally under the shoe and/or by dynamically reducing the medial component of GRF. Thirty-two subjects (20 male, 12 female; age: 58.7 ± 9.3 years; height: 1.62 ± 0.08 m; mass: 81.3 ± 14.6 kg) with medial compartment knee osteoarthritis were studied walking in a gait laboratory. The frontal plane lever arm was significantly reduced (1.62%, 0.07%ht, p=0.02) on the affected side while the magnitude of the GRF was not significantly changed. The reduction in the lever arm was weakly correlated with a medial shift in the COP. However, the combined medial shift in the COP and reduction in the medial GRF explained 50% of the change of the frontal plane lever arm. These results suggest that the medial shift in the COP at the foot produced by the intervention shoe stimulates an adaptive dynamic response during gait that reduces the frontal plane lever arm. 相似文献
6.
The purpose of this feasibility study was to examine changes in frontal plane knee and hip walking biomechanics following a gait retraining strategy focused on increasing lateral trunk lean and to quantify reports of difficulty and joint discomfort when performing such a gait modification. After undergoing a baseline analysis of normal walking, 9 young, healthy participants were trained to modify their gait to exhibit small (4°), medium (8°), and large (12°) amounts of lateral trunk lean. Training was guided by the use of real-time biofeedback of the actual trunk lean angle. Peak frontal plane external knee and hip joint moments were compared across conditions. Participants were asked to report the degree of difficulty and the presence of any joint discomfort for each amount of trunk lean modification. Small (4°), medium (8°), and large (12°) amounts of lateral trunk lean reduced the peak external knee adduction moment (KAM) by 7%, 21%, and 25%, respectively, though the peak KAM was only significantly less in the medium and large conditions (p<0.001). Increased trunk lean also significantly reduced the peak external hip adduction moments (p<0.001). All participants reported at least some difficulty performing the exaggerated trunk lean pattern and three participants reported ipsilateral knee, hip, and/or lower spine discomfort. Results from this study indicate that a gait pattern with increased lateral trunk lean can effectively reduce frontal plane joint moments. Though these findings have implications for pathological populations, learning this gait pattern was associated with some difficulty and joint discomfort. 相似文献
7.
The aim of the study was to examine the external knee adduction moments in a group of older and younger adults while descending stairs and thus the possibility of an increased risk of knee osteoarthritis due to altered knee joint loading in the elderly. Twenty-seven older and 16 younger adults descended a purpose-built staircase. A motion capture system and a force plate were used to determine the subjects' 3D kinematics and ground reaction forces (GRF) during locomotion. Calculation of the leg kinematics and kinetics was done by means of a rigid, three-segment, 3D leg model. In the initial portion of the support phase, older adults showed a more medio-posterior GRF vector relative to the ankle joint, leading to lower ankle joint moments (P<0.05). At the knee, the older adults demonstrated a more medio-posterior directed GRF vector, increasing in knee flexion and adduction in the second part of the single support phase (P<0.05). Further, GRF magnitude was lower in the initial and higher in the mid-portions of the support phase for the elderly (P<0.05). The results show that older adults descend stairs by using the trailing leg before the initiation of the double support phase more compared to the younger ones. The consequence of this altered control strategy while stepping down is a more medially directed GRF vector increasing the magnitude of external knee adduction moment in the elderly. The observed changes between leading and trailing leg in the elderly may cause a redistribution of the mechanical load at the tibiofemoral joint, affecting the initiation and progression of knee osteoarthritis in the elderly. 相似文献
8.
The external knee adduction moment (KAM) is a major variable for the evaluation of knee loading during walking, specifically in patients with knee osteoarthritis. However, assessment of the KAM is limited to locations where full motion laboratories are available. The purpose of this study was to develop and test a simple method to predict the KAM using only force plate and anthropometric measurements. Three groups of 28 knees (asymptomatic, mild osteoarthritis, and severe osteoarthritis) were studied. Walking trials were collected at different speeds using a motion capture system and a force plate. The reference KAM was calculated by inverse dynamics. For the prediction, inter-subject artificial neural networks were designed using 11 inputs coming from the ground reaction force and the mechanical axis alignment. The predicted KAM curves were similar to the reference curves with median mean absolute deviation (MAD) of 0.36%BW*Ht and median correlation coefficient of 0.966 over 756 individual trials. When comparing mean group curves, the median MAD was 0.09%BW*Ht and the median correlation coefficient 0.998. The peak values and the angular impulses extracted from the predicted and reference curves were significantly correlated, and the same significant differences were obtained among the three groups when the predicted or when the reference curves were used for 95% of the comparisons. In conclusion, this study demonstrated that a simple method using a generic artificial neural network can predict the KAM curve during walking with a high level of significance and provides a practical option for a broader evaluation of the KAM. 相似文献
9.
In-vivo quantification of loads in the constitutive structures of the osteoarthritic knee can provide clinical insight, particularly when planning a surgery like the opening-wedge high tibial osteotomy (HTO). A computational knee model was created to estimate internal kinetics during walking gait. An optimization approach partitioned loads between the muscles, ligaments, medial and lateral contact surfaces of the tibial–femoral joint. Three kinetic measures were examined in 30 HTO patients: external knee adduction moment (EKAM), medial compartment load (ML) and the medial-to-lateral compartment loads ratio (MLR). Three time points were compared: immediately pre-HTO, 6 and 12 months post-HTO. Three hypotheses were tested: (1) HTO reduces an EKAM, an ML and an MLR, (2) these measures are not significantly different at 6 and 12 months post-HTO, and (3) the change in the impulse of EKAM due to a HTO is well-correlated with the impulse of an MLR.The three hypotheses were confirmed. First peak of an EKAM during stance phase was reduced significantly by 1.70% BW-ht. ML and MLR at the same instance were reduced significantly by 0.56%BW and 1.0, respectively. These measures were not significantly different between 6 and 12 months post-HTO. Changes in impulse of an EKAM and an MLR were moderately well-correlated between the pre-HTO and 6 months post-HTO time points (R2=0.5485). Therefore, the external measure EKAM-impulse is a good proxy of the internal kinetic measure of an MLR-impulse, explaining about 55% of the variance in the change due to a HTO intervention. 相似文献
10.
Fregly BJ Reinbolt JA Chmielewski TL 《Computer methods in biomechanics and biomedical engineering》2008,11(1):63-71
A large external knee adduction torque during gait has been correlated with the progression of knee osteoarthritis (OA). Though foot path changes (e.g. toeing out) can reduce the adduction torque, no method currently exists to predict whether an optimal foot path exists for a specific patient. This study evaluates a patient-specific optimization cost function to predict how foot path changes influence both adduction torque peaks. Video motion and ground reaction data were collected from a patient with knee OA performing normal, toe out, and wide stance gait. Joint and inertial parameters in a dynamic, 27 degree-of-freedom, full-body gait model were calibrated to the patient's normal gait data. The model was then used in gait optimizations that predicted how the patient's adduction torque peaks would change due to changes in foot path. The cost function tracked the patient's normal gait data using weight factors calibrated to toe out gait and tested using wide stance gait. For both gait motions, the same cost function weights predicted the change in both adduction torque peaks to within 7% error. With further development, this approach may eventually permit the design of patient-specific rehabilitation procedures such as an optimal foot path for patients with knee OA. 相似文献
11.
Davies-Tuck ML Wluka AE Teichtahl AJ Martel-Pelletier J Pelletier JP Jones G Ding C Davis SR Cicuttini FM 《Arthritis research & therapy》2008,10(3):R58
Introduction
Meniscal injury is a risk factor for the development and progression of knee osteoarthritis, yet little is known about risk factors for meniscal pathology. Joint loading mediated via gait parameters may be associated with meniscal tears, and determining whether such an association exists was the aim of this study. 相似文献12.
Claudio Marcos Bedran Magalhães Renan Alves Resende Renata Noce Kirkwood 《Journal of electromyography and kinesiology》2013,23(5):1243-1249
The purpose of this study was to identify the gait strategies in women with mild and moderate knee osteoarthritis (OA). Forty women diagnosed with OA of the knee and 40 healthy women participated in the study. Toe-out progression angle, trunk lateral lean, hip internal abduction moment and gait speed were measured using Qualisys ProReflex System and two force plates. Principal component analysis was applied to extract features from the gait waveforms data that characterized the waveforms main modes of temporal variation. Discriminant analysis with a stepwise model was conducted to determine which strategies could best discriminate groups. According to the discriminant model, the PC2 of the internal abduction moment of the hip and the gait speed were the most discriminatory variables between the groups. The OA group showed decreased gait speed, decreased hip internal abduction moment during the loading response phase, and increased hip internal abduction moment during the mid and terminal stance phases. Interventions that may increase hip internal abduction moment, such as the strengthening of the hip abductors muscles, may benefit women with knee OA. Training slower than normal gait speeds must be considered in light of potential adverse implications on overall physical function, daily tasks, and safety. 相似文献
13.
Inadequate peak knee extension during the swing phase of gait is a major deficit in individuals with spastic cerebral palsy (CP). The biomechanical mechanisms responsible for knee extension have not been thoroughly examined in CP. The purpose of this study was to assess the contributions of joint moments and gravity to knee extension acceleration during swing in children with spastic hemiplegic CP. Six children with spastic hemiplegic CP were recruited (age=13.4±4.8 years). Gait data were collected using an eight-camera system. Induced acceleration analysis was performed for each limb during swing. Average joint moment and gravity contributions to swing knee extension acceleration were calculated. Total swing and stance joint moment contributions were compared between the hemiplegic and non-hemiplegic limbs using paired t-tests (p<0.05). Swing limb joint moment contributions from the hemiplegic limb decelerated swing knee extension significantly more than those of the non-hemiplegic limb and resulted in significantly reduced knee extension acceleration. Total stance limb joint moment contributions were not statistically different. Swing limb joint moment contributions that decelerated knee extension appeared to be the primary cause of inadequate knee extension acceleration during swing. Stance limb muscle strength did not appear to be the limiting factor in achieving adequate knee extension in children with CP. Recent research has shown that the ability to extend the knee during swing is dependent on the selective voluntary motor control of the limb. Data from individual participants support this concept. 相似文献
14.
By learning to discriminate among visual stimuli, human observers can become experts at specific visual tasks. The same is true for Rhesus monkeys, the major animal model of human visual perception. Here, we systematically compare how humans and monkeys solve a simple visual task. We trained humans and monkeys to discriminate between the members of small natural-image sets. We employed the "Bubbles" procedure to determine the stimulus features used by the observers. On average, monkeys used image features drawn from a diagnostic region covering about 7% +/- 2% of the images. Humans were able to use image features drawn from a much larger diagnostic region covering on average 51% +/- 4% of the images. Similarly for the two species, however, about 2% of the image needed to be visible within the diagnostic region on any individual trial for correct performance. We characterize the low-level image properties of the diagnostic regions and discuss individual differences among the monkeys. Our results reveal that monkeys base their behavior on confined image patches and essentially ignore a large fraction of the visual input, whereas humans are able to gather visual information with greater flexibility from large image regions. 相似文献
15.
Previous authors have questioned the practice of normalizing the external knee adduction moment during gait to body size when investigating dynamic joint loading in knee osteoarthritis (OA). The purpose of this study was to compare the abilities of non-normalized and normalized external knee adduction moments during gait in discriminating between patients with least and greatest severity of radiographic medial compartment knee OA. Subjects with mild (n=118) and severe (n=115) medial compartment knee OA underwent three-dimensional gait analysis. The peak external knee adduction moment was calculated and kept in its original units (Nm), normalized to body mass (Nm/kg) and normalized to body weight and height (%BW × Ht). Receiver Operating Characteristic (ROC) curve analysis indicated that non-normalized values better discriminated between patients with mild and severe knee OA. The area under the ROC curve for non-normalized peak knee adduction moments (0.63) was significantly (p<0.05) greater than when normalized to body mass (0.58), or to body weight times height (0.57). Post-hoc analysis of covariance indicated the mean difference in peak knee adduction moment between OA severity groups (7.23 Nm, p=0.003) was reduced by approximately 50% (3.60 Nm, p=0.09) when adjusted for mass. These findings are consistent with the suggestion that non-normalized values are more sensitive to radiographic disease progression. We suggest including knee adduction moment values that are not normalized to body size when investigating knee OA. 相似文献
16.
Recurrent signals in the brain are often associated with slower sensory and cognitive processes. Such patterns of activity may also form the basis of rapid perception. 相似文献
17.
Senanayake C Senanayake SM 《Computer methods in biomechanics and biomedical engineering》2011,14(10):863-874
In this paper, a gait event detection algorithm is presented that uses computer intelligence (fuzzy logic) to identify seven gait phases in walking gait. Two inertial measurement units and four force-sensitive resistors were used to obtain knee angle and foot pressure patterns, respectively. Fuzzy logic is used to address the complexity in distinguishing gait phases based on discrete events. A novel application of the seven-dimensional vector analysis method to estimate the amount of abnormalities detected was also investigated based on the two gait parameters. Experiments were carried out to validate the application of the two proposed algorithms to provide accurate feedback in rehabilitation. The algorithm responses were tested for two cases, normal and abnormal gait. The large amount of data required for reliable gait-phase detection necessitate the utilisation of computer methods to store and manage the data. Therefore, a database management system and an interactive graphical user interface were developed for the utilisation of the overall system in a clinical environment. 相似文献
18.
Chathuri Senanayake 《Computer methods in biomechanics and biomedical engineering》2013,16(10):863-874
In this paper, a gait event detection algorithm is presented that uses computer intelligence (fuzzy logic) to identify seven gait phases in walking gait. Two inertial measurement units and four force-sensitive resistors were used to obtain knee angle and foot pressure patterns, respectively. Fuzzy logic is used to address the complexity in distinguishing gait phases based on discrete events. A novel application of the seven-dimensional vector analysis method to estimate the amount of abnormalities detected was also investigated based on the two gait parameters. Experiments were carried out to validate the application of the two proposed algorithms to provide accurate feedback in rehabilitation. The algorithm responses were tested for two cases, normal and abnormal gait. The large amount of data required for reliable gait-phase detection necessitate the utilisation of computer methods to store and manage the data. Therefore, a database management system and an interactive graphical user interface were developed for the utilisation of the overall system in a clinical environment. 相似文献
19.
Eavesdropping on communication is widespread among animals, e.g. bystanders observing male-male contests, female mate choice copying and predator detection of prey cues. Some animals also exhibit signal matching, e.g. overlapping of competitors' acoustic signals in aggressive interactions. Fewer studies have examined male eavesdropping on conspecific courtship, although males could increase mating success by attending to others' behaviour and displaying whenever courtship is detected. In this study, we show that field-experienced male Schizocosa ocreata wolf spiders exhibit eavesdropping and signal matching when exposed to video playback of courting male conspecifics. Male spiders had longer bouts of interaction with a courting male stimulus, and more bouts of courtship signalling during and after the presence of a male on the video screen. Rates of courtship (leg tapping) displayed by individual focal males were correlated with the rates of the video exemplar to which they were exposed. These findings suggest male wolf spiders might gain information by eavesdropping on conspecific courtship and adjust performance to match that of rivals. This represents a novel finding, as these behaviours have previously been seen primarily among vertebrates. 相似文献
20.
Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system 总被引:1,自引:0,他引:1
Christian Antfolk Christian Balkenius Göran Lundborg Birgitta Rosén Fredrik Sebelius 《Biomedical engineering online》2010,9(1):50