首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have demonstrated before that exposure of neuronal cultures to poisoning by iodoacetic acid (IAA) followed by “reperfusion” (IAA-R insult), results in severe cytotoxicity, which could be markedly attenuated by prior activation of the adenosine A1 receptors. We also have demonstrated that adenosine activates a signal transduction pathway (STP), which involves activation of PKCε and opening of KATP channels. Here, we provide proof for the involvement also of phospholipase C (PLC) in the neuronal protective adenosine-activated STP. R-PIA, a specific A1 adenosine receptor agonist, was found to enhance neuronal PLC activity and protect against the IAA-R insult. The PLC inhibitor U73122, abrogated both R-PIA-induced effects. These results demonstrate that activation of PLC is a vital step in the neuronal protective adenosine-induced STP.  相似文献   

2.
Phosphoinositide specific phospholipase C (PI‐PLC) enzymes interfere with the metabolism of inositol phospholipids (PI), molecules involved in signal transduction, a complex process depending on various components. Many evidences support the hypothesis that, in the glia, isoforms of PI‐PLC family display different expression and/or sub cellular distribution under non‐physiological conditions such as the rat astrocytes activation during neurodegeneration, the tumoural progression of some neoplasms and the inflammatory cascade activation after lipopolysaccharide administration, even if their role remains not completely elucidated. Treatment of a cultured established glioma cell line (C6 rat astrocytoma cell line) induces a modification in the pattern of expression and of sub cellular distribution of PI‐PLCs compared to untreated cells. Special attention require PI‐PLC beta3 and PI‐PLC gamma2 isoforms, whose expression and sub cellular localization significantly differ after U‐73122 treatment. The meaning of these modifications is unclear, also because the use of this N‐aminosteroid compound remains controversial, inasmuch it has further actions which might contribute to the global effect recorded on the treated cells. J. Cell. Biochem. 110: 1005–1012, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.  相似文献   

5.
Oocyte apoptosis can be used as an indicator of oocyte quality and development competency. Phospholipase C (PLC) is a critical enzyme that participates in phosphoinositide metabolic regulation and performs many functions, including the regulation of reproduction. In this study, we aimed to explore whether PLC participates in the regulation of apoptosis in porcine oocytes and investigated its possible mechanism. In porcine oocytes, 0.5 μM U73122 (the PLC inhibitor) was considered to be the best concentration to facilitate maturation, and 0.5 μM m-3M3FBS (the PLC activator) was regarded as the most appropriate concentration to inhibit maturation. The percentage of cleavage and blastocysts treated with 0.5 μM U73122 was lower than that of the control group. Furthermore, the percentage of cleavage and blastocysts treated with 0.5 μM m-3M3FBS was higher than that of the control group. The relative PLC messenger RNA (mRNA) expression tested by a quantitative real-time polymerase chain reaction was found to be inhibited by 0.5 μM U73122 or activated by 0.5 μM m-3M3FBS. The relative mRNA abundance of BAK, BAX, CASP3, CASP8, and TP53 and protein abundance of Bak, cleaved caspase-3, caspase-8, and P53 was activated by U73122 or inhibited by m-3M3FBS, while the relative mRNA and protein level of BCL6 showed the opposite trend. The intracellular Ca2+ concentration increased and the expression of PLCB1 protein also increased in porcine oocytes when they were cultured with 0.5 μM m-3M3FBS for 44 hours. The abundance of proteins PKCβ and CAMKIIα and the expression of several downstream genes (CDC42, NFATc1, NFATc2, NFκB, and NLK) were activated by m-3M3FBS or inhibited by U73122. Our findings indicate that PLC inhibits apoptosis and maturation in porcine oocytes. The intracellular Ca2+ concentration, two Ca2+-sensitive proteins, and several downstream genes were positively regulated by PLC.  相似文献   

6.
Cardiac hypertrophy is characterized by increased cardiomyocyte size, mRNA levels for atrial natriuretic factor (ANF), and protein synthesis. Although activation of the phosphoinositide-specific phospholipase C (PLC) leads to the generation of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate, the involvement of PLC in hypertrophic response remains to be fully understood. The present study was therefore undertaken to examine if the inhibition of PLC activity is associated with a decrease in ANF expression and protein synthesis in cardiomyocytes, due to norepinephrine (NE), a known hypertrophic agent. NE resulted in an increase in ANF gene expression and protein synthesis in adult rat cardiomyocytes, these effects of NE were attenuated by a PLC inhibitor, U73122. The NE-induced increase in ANF gene expression and protein synthesis was also inhibited by an alpha-adrenoceptor blocker, prazosin. Both U73122 and prazosin depressed the NE-induced increase in DAG production in cardiomyocytes. These results indicate that the alpha-adrenoceptor mediated PLC activation may be involved in the process of NE-induced cardiac hypertrophy.  相似文献   

7.
We have previously identified a Galpha(i/o)-protein-coupled receptor (TG1019/OXE) using 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) as its ligand. We investigated signal transduction from TG1019 following stimulation with 5-oxo-ETE and role of TG1019 in 5-oxo-ETE-induced chemotaxis, using Chinese hamster ovary cells expressing TG1019 (CHO/TG1019 cells). 5-Oxo-ETE induced intracellular calcium mobilization and rapid activation of MEK/ERK and PI3K/Akt pathways in CHO/TG1019 cells. CHO/TG1019 cells stimulated with 5-oxo-ETE and other eicosanoids exhibited chemotaxis with efficacies related to agonistic activity of each eicosanoid for TG1019. Pretreatment of the cells with pertussis toxin, a phospholipase C (PLC) inhibitor (U73122) or a PI3K inhibitor (LY294002), markedly suppressed 5-oxo-ETE-induced chemotaxis, whereas pretreatment with a MEK inhibitor (PD98059) had no significant effect on the chemotaxis. Our results show that TG1019 mediates 5-oxo-ETE-induced chemotaxis and that signals from TG1019 are transduced via Galpha(i/o) protein to PLC/calcium mobilization, MEK/ERK, and PI3K/Akt, among which PLC and PI3K would play important roles in the chemotaxis.  相似文献   

8.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   

9.
Eukaryotic phosphoinositide-specific phospholipases C (PI-PLC) specifically hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)], produce the Ca(2+)-mobilizing agent inositol 1,4,5-trisphosphate, and regulate signaling in multicellular organisms. Bacterial PtdIns-specific PLCs, also present in trypanosomes, hydrolyze PtdIns and glycosyl-PtdIns, and they are considered important virulence factors. All unicellular eukaryotes studied so far contain a single PI-PLC-like gene. In this report, we show that ciliates are an exception, since we provide evidence that Tetrahymena species contain two sets of functional genes coding for both bacterial and eukaryotic PLCs. Biochemical characterization revealed two PLC activities that differ in their phosphoinositide substrate utilization, subcellular localization, secretion to extracellular space, and sensitivity to Ca(2+). One of these activities was identified as a typical membrane-associated PI-PLC activated by low-micromolar Ca(2+), modestly activated by GTPγS in vitro, and inhibited by the compound U73122 [1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. Importantly, inhibition of PI-PLC in vivo resulted in rapid upregulation of PtdIns(4,5)P(2) levels, suggesting its functional importance in regulating phosphoinositide turnover in Tetrahymena. By in silico and molecular analysis, we identified two PLC genes that exhibit significant similarity to bacterial but not trypanosomal PLC genes and three eukaryotic PI-PLC genes, one of which is a novel inactive PLC similar to proteins identified only in metazoa. Comparative studies of expression patterns and PI-PLC activities in three T. thermophila strains showed a correlation between expression levels and activity, suggesting that the three eukaryotic PI-PLC genes are functionally nonredundant. Our findings imply the presence of a conserved and elaborate PI-PLC-Ins(1,4,5)P(3)-Ca(2+) regulatory axis in ciliates.  相似文献   

10.
It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G11-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changes in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP β2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or β2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [3H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.  相似文献   

11.
12.
Cofilin, an actin-binding protein, plays an important role in the migration, phagocytosis, and superoxide production of activated phagocytes through cytoskeletal reorganization. In unstimulated phagocytes, cofilin is a major phosphoprotein. However, upon activation, the phosphoprotein is dephosphorylated and translocated from cytosol to plasma membranes. Only the unphosphorylated form of cofilin is an active form that binds actin, whereas the regulatory mechanisms of cofilin have not been elucidated. We found that 1-[6-[[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), an inhibitor of phospholipase C (PLC), suppressed both opsonized zymosan (OZ)-induced dephosphorylation and translocation of cofilin in macrophage-like U937 cells at 4 microM concentration. OZ triggered an increase in inositol 1,4,5-trisphosphate (IP3), and U73122 inhibited it. 1-[6-[[17beta-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-pyrrodione-dione (U73343), which was employed as an inactive analogue, had no such inhibitory activities as did U73122. Furthermore, herbimycin A, an inhibitor of src-type tyrosine kinase, also inhibited OZ-triggered IP3 formation. These results suggest that the activity and localization of cofilin are regulated by PLC at the downstream of src-family tyrosine kinase.  相似文献   

13.
Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cell membranes. Several lines of evidence support that PC homeostasis is preserved by the equilibrium between PC biosynthetic enzymes and phospholipases catabolic activities. We have previously shown that papillary synthesis of PC depends on prostaglandins (PGs) that modulate biosynthetic enzymes. In papillary tissue, under bradikynin stimulus, arachidonic acid (AA) mobilization (the substrate for PG synthesis) requires a previous phospholipase C (PLC) activation. Thus, in the present work, we study the possible involvement of PLC in PC biosynthesis and its relationship with PG biosynthetic pathway on the maintenance of phospholipid renewal in papillary membranes; we also evaluated the relevance of CDP-choline pathway enzymes compartmentalization. To this end, neomycin, U-73122 and dibutiryl cyclic AMP, reported as PLC inhibitors, were used to study PC synthesis in rat renal papilla. All the PLC inhibitors assayed impaired PC synthesis. PG synthesis was also blocked by PLC inhibitors without affecting cyclooxygenase activity, indicating a metabolic connection between both pathways. However, we found that PC biosynthesis decrease in the presence of PLC inhibitors was not a consequence of PG decreased synthesis, suggesting that basal PLC activity and PGs exert their effect on different targets of PC biosynthetic pathway. The study of PC biosynthetic enzymes showed that PLC inhibitors affect CTP:phosphocholine cytidylyltransferase (CCT) activity while PGD2 operates on CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), both activities associated to papillary enriched-nuclei fraction. The present results suggest that renal papillary PC synthesis is a highly regulated process under basal conditions. Such regulation might occur at least at two different levels of the CDP-choline pathway: on the one hand, PLC operates on CCT activity; on the other, while PGs regulate CPT activity.  相似文献   

14.
Our previous work using a melanoma progression model composed of melanocytic cells (melanocytes, primary and metastatic melanoma samples) demonstrated various deregulated genes, including a few known lncRNAs. Further analysis was conducted to discover novel lncRNAs associated with melanoma, and candidates were prioritized for their potential association with invasiveness or other metastasis‐related processes. In this sense, we found the intergenic lncRNA U73166 (ENSG00000230454) and decided to explore its effects in melanoma. For that, we silenced the lncRNA U73166 expression using shRNAs in a melanoma cell line. Next, we experimentally investigated its functions and found that migration and invasion had significantly decreased in knockdown cells, indicating an essential association of lncRNA U73166 for cancer processes. Additionally, using naïve and vemurafenib‐resistant cell lines and data from a patient before and after resistance, we found that vemurafenib‐resistant samples had a higher expression of lncRNA U73166. Also, we retrieved data from the literature that indicates lncRNA U73166 may act as a mediator of RNA processing and cell invasion, probably inducing a more aggressive phenotype. Therefore, our results suggest a relevant role of lncRNA U73166 in metastasis development. We also pointed herein the lncRNA U73166 as a new possible biomarker or target to help overcome clinical vemurafenib resistance.  相似文献   

15.
In this work, we developed a novel enzymatic method for measuring phosphatidic acid (PA) in cultured cells. The enzymatic reaction sequence of the method involves hydrolysis of PA to produce glycerol-3-phosphate (G3P), which is then oxidized by G3P oxidase to generate hydrogen peroxide. In the presence of peroxidase, hydrogen peroxide reacted with Amplex Red to produce highly fluorescent resorufin. We found that lipase from Pseudomonas sp. can completely hydrolyze PA to G3P and FAs. The calibration curve for PA measurement was linear between 20 and 250 µM, and the detection limit was 5 µM (50 pmol in the reaction mixture). We also modified the method for the enzymatic measurement of lysophosphatidic acid. By this new method, we determined the PA content in the lipid extract from HEK293 cells. The cellular content of PA was decreased with increasing cell density but not correlated with the proliferation rate. The diacylglycerol kinase inhibitor R59949 markedly reduced the cellular PA content, suggesting the diacylglycerol kinase activity was involved in a large part of the PA production in HEK293 cells. This novel method for PA quantification is simple, rapid, specific, sensitive, and high-throughput and will help to study the biological functions of PA and its related enzymes.  相似文献   

16.
17.
18.
Seo KH  Rhee JI 《Biotechnology letters》2004,26(19):1475-1479
The phospholipase c (plc) gene from Bacillus cereus was cloned into the pPICZC vector and integrated into the genome of Pichia pastoris. The phospholipase C (PLC) when expressed in P. pastoris was fused to the alpha-factor secretion signal peptide of Saccharomyces cerevisiae and secreted into a culture medium. Recombinant P. pastoris X-33 had a clear PLC band at 28.5 kDa and produced an extracellular PLC with an activity of 678 U mg(-1) protein which was more than a recombinant P. pastoris GS115 (552 U mg(-1) protein) or KM71H (539 U mg(-1) protein). The PLCs were purified using a HiTrap affinity column with a specific activity of 1335 U mg(-1) protein by P. pastoris GS115, 1176 U mg(-1) protein by P. pastoris KM71H and 1522 U mg(-1) protein by P. pastoris X-33. The three recombinant PLCs had high PLC activity in the low pH range of 4-5 and higher thermal stability (e.g. stable at 75 degrees C) than the wild-type PLC from B. cereus . Some organic solvents, surfactants and metal ions, e.g. methanol, acetone, Co(2+) and Mn(2+) etc., also influenced the activity of the recombinant PLCs.  相似文献   

19.
Egg activation in all animals evidently requires the synthesis of inositol 1,4,5-trisphosphate (InsP(3)) from phosphatidylinositol 4,5-bisphosphate (PIP(2)) by phospholipase C (PLC). Depending on the organism, InsP(3) elicits either calcium oscillations or a single wave, which in turn initiates development. A soluble component in boar sperm that activates mammalian eggs has been suggested to be a PLC isoform. We tested this hypothesis in vitro using egg microsomes of Chaetopterus. Boar sperm factor elicited Ca(2+) release from the microsomes by an InsP(3)-dependent mechanism. The PLC inhibitor U-73122, but not its inactive analog U-73343, blocked the response to sperm factor but not to InsP(3). U-73122 also inhibited the activation of fertilized and parthenogenetic eggs. Chaetopterus sperm also contained a similar activity. These results strongly support the hypothesis that sperm PLCs are ubiquitous mediators of egg activation at fertilization.  相似文献   

20.
The small chaperone protein Hsp27 confers resistance to apoptosis, and therefore is an attractive anticancer drug target. We report here a novel mechanism underlying the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitizing activity of the small molecule LY303511, an inactive analog of the phosphoinositide 3-kinase inhibitor inhibitor LY294002, in HeLa cells that are refractory to TRAIL-induced apoptosis. On the basis of the fact that LY303511 is derived from LY294002, itself derived from quercetin, and earlier findings indicating that quercetin and LY294002 affected Hsp27 expression, we investigated whether LY303511 sensitized cancer cells to TRAIL via a conserved inhibitory effect on Hsp27. We provide evidence that upon treatment with LY303511, Hsp27 is progressively sequestered in the nucleus, thus reducing its protective effect in the cytosol during the apoptotic process. LY303511-induced nuclear translocation of Hsp27 is linked to its sustained phosphorylation via activation of p38 kinase and MAPKAP kinase 2 and the inhibition of PP2A. Furthermore, Hsp27 phosphorylation leads to the subsequent dissociation of its large oligomers and a decrease in its chaperone activity, thereby further compromising the death inhibitory activity of Hsp27. Furthermore, genetic manipulation of Hsp27 expression significantly affected the TRAIL sensitizing activity of LY303511, which corroborated the Hsp27 targeting activity of LY303511. Taken together, these data indicate a novel mechanism of small molecule sensitization to TRAIL through targeting of Hsp27 functions, rather than its overall expression, leading to decreased cellular protection, which could have therapeutic implications for overcoming chemotherapy resistance in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号