首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the diabetes-prone NOD mouse, there is a proven association between a systemic deficiency of NKT cells and the onset of type 1 diabetes. Numerous reports of similar defects within the NKT cell compartment of human type 1 diabetes patients suggested NKT cell levels might be a valuable predictor of susceptibility and could provide a target for therapeutic intervention. Two recent studies, however, found no association between type 1 diabetes and blood NKT cell levels in humans and consequently rejected a link between the onset of diabetes and NKT cell deficiency. This cast considerable doubts on the potential for NKT cell-based clinical applications and challenged the validity of the NOD mouse as a model of human type 1 diabetes. We now report that NKT cell levels in blood are a poor representation of those in other organs. Strikingly, systemic NKT cell deficiencies were identified in NOD mice with normal, or even raised, blood levels. This re-establishes the correlation between NKT cell deficiency and type 1 diabetes and raises important questions regarding the assaying of NKT cell levels in humans.  相似文献   

2.
Marginal zone B (MZB) cells play an important role in the host defense against blood-borne pathogens. Recently, it has been reported that MZB cells amplify dendritic cell-mediated activation of natural killer T (NKT) cells, suggesting that MZB cells are required for optimal NKT cell stimulation. Prior studies have led us to test whether the increased levels of NKT cells would have an immunological impact on MZB cells. To this end, we employed Vα14 TCR transgenic (tg) mice and found that MZB cells were 2 to 3 times more abundant in these mice, compared with wild-type mice, at 15 weeks of age. In addition, this expansion of MZB cells was not observed in young (5-week-old) Vα14 TCR tg mice, implying that aging is one of the factors regulating MZB cell expansion. Because NKT cells consist of heterogeneous subsets with distinct immunological functions, we next examined whether there were any alterations to the frequencies of individual NKT subpopulations. Interestingly, Vα14 TCR tg mice manifested a biased increase in levels of CD4? NKT cells. These cells are known to produce IFNγ, which may explain the unexpected expansion of MZB cells in Vα14 TCR tg mice, because IFNγ has been reported to activate MZB cells to produce IL10. Taken together, our results demonstrate that the specific increase in numbers of CD4? NKT cells may contribute to MZB cell expansion.  相似文献   

3.
CD1d-restricted NKT cells express an invariant TCR and have been demonstrated to play an important regulatory role in a variety of immune responses. Invariant NKT cells down-regulate autoimmune responses by production of type 2 cytokines and can initiate antitumor and antimicrobial immune responses by production of type 1 cytokines. Although defects in the (invariant) Valpha24+Vbeta11+ NKT cell population have been observed in patients with cancer and autoimmune diseases, little is known regarding the protective role of Valpha24+Vbeta11+ NKT cells in human infectious disease. In a cross-sectional study in HIV-1-infected individuals, we found circulating numbers of Valpha24+Vbeta11+ NKT cells to be reduced, independent of CD4+ T cell counts, CD4:CD8 ratios, and viral load. Because a small minority of Valpha24+Vbeta11+ NKT cells of healthy donors expressed HIV-1 (co)receptors and the vast majority of Valpha24+Vbeta11+ NKT cells in HIV-1-infected individuals expressed the Fas receptor, the depletion was more likely due to Fas-mediated apoptosis than to preferential infection of Valpha24+Vbeta11+ NKT cells by HIV-1. A longitudinal cohort study, in which patients were analyzed before seroconversion and 1 and 5 years after seroconversion, demonstrated that a large proportion of the depletion occurred within the first year postseroconversion. In this longitudinal study no evidence was found to support an important role of Valpha24+Vbeta11+ NKT cells in determining the rate of progression during HIV-1 infection.  相似文献   

4.
Evidence suggests that NK and NKT cells contribute to inflammation and mortality during septic shock caused by cecal ligation and puncture (CLP). However, the specific contributions of these cell types to the pathogenesis of CLP-induced septic shock have not been fully defined. The goal of the present study was to determine the mechanisms by which NK and NKT cells mediate the host response to CLP. Control, NK cell-deficient, and NKT cell-deficient mice underwent CLP. Survival, cytokine production, and bacterial clearance were measured. NK cell trafficking and interaction with myeloid cells was also studied. Results show that mice treated with anti-asialoGM1 (NK cell deficient) or anti-NK1.1 (NK/NKT cell deficient) show less systemic inflammation and have improved survival compared with IgG-treated controls. CD1 knockout mice (NKT cell deficient) did not demonstrate decreased cytokine production or improved survival compared with wild type mice. Trafficking studies show migration of NK cells from blood and spleen into the inflamed peritoneal cavity where they appear to facilitate the activation of peritoneal macrophages (F4-80(+)GR-1(-)) and F4-80(+)Gr-1(+) myeloid cells. These findings indicate that NK but not CD1-restricted NKT cells contribute to acute CLP-induced inflammation. NK cells appear to mediate their proinflammatory functions during septic shock, in part, by migration into the peritoneal cavity and amplification of the proinflammatory activities of specific myeloid cell populations. These findings provide new insights into the mechanisms used by NK cells to facilitate acute inflammation during septic shock.  相似文献   

5.
6.
NKT cells contribute to the modulation of immune responses and are believed to be important in the pathogenesis of autoimmune and infectious diseases, as well as cancer. Variations in the composite NKT cytokine response may determine individual disease susceptibility or severity. Due to low frequencies in peripheral blood, knowledge of the breadth of ex vivo human NKT cell functions has been limited. To bridge this gap, we studied highly purified NKT cells from PBMC of healthy donors and assessed the production of 27 effector functions using sensitive Elispot and multiplex bead assays. We found the ex vivo human NKT cell response is predominantly comprised of the chemokines MIP1-α, and MIP1-β as well as the Th1 cytokines IFN-γ and TNF-α. Although lower in magnitude, there was also significant production of IL-2, IL-4, and perforin after mitogen stimulation. Surprisingly, little/no IL-5, IL-6, IL-10, or IL-13 was detected, and no subjects' NKT cells produced IL-17. Comparison of the NKT functional profiles between age-matched male and female subjects revealed similar IL-4 responses, but higher frequencies of cells producing IFN-γ and MIP1-α, from males. There were no gender differences in the circulating NKT subset distribution. These findings implicate chemokines as a major mechanism by which NKT cells control responses in humans. In addition, the panoply of Th2 and Th17 cytokine secretion by NKT cells from healthy donors may not be as pronounced as previously believed. NKT cells may therefore contribute to the gender bias found in many diseases.  相似文献   

7.
X-linked lymphoproliferative disease (XLP) is a fatal immunological disorder that typically manifests following EBV infection. XLP patients exhibit a number of immune defects including abnormal T, B, and NK lymphocyte function. These defects have been attributed to mutations of Src homology 2 domain-containing gene 1A (SH2D1A), the gene encoding signaling lymphocytic activation molecule-associated protein (SAP), an intracellular adaptor molecule expressed in lymphocytes. We have observed that SAP knockout (SAPKO) mice and humans with XLP have a complete lack of CD1d-restricted NKT cells. As expected, SAPKO mice injected with the NKT cell agonist, alpha-galactosylceramide failed to generate NKT cell IFN-gamma or IL-4. Furthermore, in contrast to wild-type littermates, SAPKO mice coinjected with OVA and alpha-galactosylceramide failed to mount OVA-specific CTL responses. These data suggest that an absence of NKT cells may underlie part of the immune dysregulation seen in SAPKO mice and in XLP patients.  相似文献   

8.
9.
Genetic control of NKT cell numbers   总被引:2,自引:0,他引:2  
NKT cells play a critical role in shaping the character and strength of a wide range of immune responses, including those against pathogens, tumours, allografts and autologous tissues. Because numbers of NKT cells affect clinical outcomes in a wide range of disease models, and this characteristic demonstrates allelic variation, the mapping of the locations and identification of the coding sequences of these genes has become a matter of significant importance. Here, we review the results to date that examine the effects of targeted deletion of a number of candidate genes, as well as the congenic and genetic linkage analyses that have attempted to localize allelic loci that affect NKT cell numbers. Although a number of candidate genes have been examined, there is no evidence that any of these contribute to variation in NKT cell numbers in natural populations. Two of the most important genetic regions controlling NKT cell numbers are Nkt1 on chromosome 1, which may contribute to lupus susceptibility, and Nkt2 on chromosome 2, which appears to contribute to diabetes susceptibility. Of great interest is a third locus on chromosome 18, identified in a novel congenic line, which can confer an absolute deficiency in this important immunoregulatory lymphocyte population.  相似文献   

10.
Natural killer T (NKT) cells generally recognize lipid-antigens presented in the context of the MHC class I-like molecule CD1d. CD1d-restricted NKT cells consist of two broad subsets: Type I, which express an invariant T cell receptor (TCR) and type II, which utilize diverse TCR gene segments. A major type II NKT subset has been shown to recognize a self-glycolipid, sulfatide. Both subsets play important roles in autoimmune diseases, tumor surveillance, and infectious diseases. While type I NKT cells protect from tumor growth by enhancing tumor surveillance, type II NKT cells may suppress anti-tumor immune responses. In a murine autoimmune hepatitis model, type I NKT cells contribute to pathogenesis, whereas activation of sulfatide-reactive type II NKT cells protects from disease. Sulfatide-mediated activation of type II NKT cells results in modification of dendritic cells and induction of anergy in type I NKT cells. Elucidation of this novel pathway of cross-regulation among NKT cell subsets will provide tools for intervention in autoimmune diseases and for designing strategies for effective anti-tumor immunity.  相似文献   

11.
Natural killer T (NKT) cells are a subset of T lymphocytes with potent immunoregulatory properties. Recognition of self-antigens presented by CD1d molecules is an important route of NKT cell activation; however, the molecular identity of specific autoantigens that stimulate human NKT cells remains unclear. Here, we have analyzed human NKT cell recognition of CD1d cellular ligands. The most clearly antigenic species was lyso-phosphatidylcholine (LPC). Diacylated phosphatidylcholine and lyso-phosphoglycerols differing in the chemistry of the head group stimulated only weak responses from human NKT cells. However, lyso-sphingomyelin, which shares the phosphocholine head group of LPC, also activated NKT cells. Antigen-presenting cells pulsed with LPC were capable of stimulating increased cytokine responses by NKT cell clones and by freshly isolated peripheral blood lymphocytes. These results demonstrate that human NKT cells recognize cholinated lyso-phospholipids as antigens presented by CD1d. Since these lyso-phospholipids serve as lipid messengers in normal physiological processes and are present at elevated levels during inflammatory responses, these findings point to a novel link between NKT cells and cellular signaling pathways that are associated with human disease pathophysiology.  相似文献   

12.
Despite more than a 10-fold increase in T cell numbers in G-CSF-mobilized peripheral blood stem cell (PBSC) grafts, incidence and severity of acute graft-vs-host disease (GVHD) are comparable to bone marrow transplantation. As CD1d-restricted, Valpha24+Vbeta11+ NKT cells have pivotal immune regulatory functions and may influence GVHD, we aimed to determine whether G-CSF has any effects on human NKT cells. In this study, we examined the frequency and absolute numbers of peripheral blood NKT cells in healthy stem cell donors (n = 8) before and following G-CSF (filgrastim) treatment. Effects of in vivo and in vitro G-CSF on NKT cell cytokine expression profiles and on responsiveness of NKT cell subpopulations to specific stimulation by alpha-galactosylceramide (alpha-GalCer) were assessed. Contrary to the effects on conventional T cells, the absolute number of peripheral blood NKT cells was unaffected by G-CSF administration. Furthermore, responsiveness of NKT cells to alpha-GalCer stimulation was significantly decreased (p < 0.05) following exposure to G-CSF in vivo. This hyporesponsiveness was predominantly due to a direct effect on NKT cells, with a lesser contribution from G-CSF-mediated changes in APC. G-CSF administration resulted in polarization of NKT cells toward a Th2, IL-4-secreting phenotype following alpha-GalCer stimulation and preferential expansion of the CD4+ NKT cell subset. We conclude that G-CSF has previously unrecognized differential effects in vivo on NKT cells and conventional MHC-restricted T cells, and effects on NKT cells may contribute to the lower than expected incidence of GVHD following allogeneic peripheral blood stem cell transplantation.  相似文献   

13.
Common variable immunodeficiency disorder (CVID) is the commonest cause of primary antibody failure in adults and children, and characterized clinically by recurrent bacterial infections and autoimmune manifestations. Several innate immune defects have been described in CVID, but no study has yet investigated the frequency, phenotype or function of the key regulatory cell population, natural killer T (NKT) cells. We measured the frequencies and subsets of NKT cells in patients with CVID and compared these to healthy controls. Our results show a skewing of NKT cell subsets, with CD4+ NKT cells at higher frequencies, and CD8+ NKT cells at lower frequencies. However, these cells were highly activated and expression CD161. The NKT cells had a higher expression of CCR5 and concomitantly expression of CCR5+CD69+CXCR6 suggesting a compensation of the remaining population of NKT cells for rapid effector action.  相似文献   

14.
CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-beta, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-beta and IL-10 on human iNKT cells, because TGF-beta suppressed iNKT cell activation and proliferation and IFN-gamma production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses.  相似文献   

15.
NKT and NK cells are important immune regulatory cells. The only efficient means to selectively stimulate NKT cells in vivo is alpha-galactosylceramide (alphaGalCer). However, alphaGalCer effectively stimulates and then diminishes the number of detectable NKT cells. It also exhibits a potent, indirect ability to activate NK cells. We have now discovered another ceramide compound, beta-galactosylceramide (betaGalCer) (C12), that efficiently diminishes the number of detectable mouse NKT cells in vivo without inducing significant cytokine expression or activation of NK cells. Binding studies using CD1d tetramers loaded with betaGalCer (C12) demonstrated significant but lower intensity binding to NKT cells when compared with alphaGalCer, but both ceramides were equally efficient in reducing the number of NKT cells. However, betaGalCer (C12), in contrast to alphaGalCer, failed to increase NK cell size, number, and cytolytic activity. Also in contrast to alphaGalCer, betaGalCer (C12) is a poor inducer of IFN-gamma, TNF-alpha, GM-CSF, and IL-4 gene expression. These qualitative differences in NKT perturbation/NK activation have important implications for delineating the unique in vivo roles of NKT vs NK cells. Thus, alphaGalCer (which triggers NKT cells and activates NK cells) efficiently increases the resistance to allogeneic bone marrow transplantation while betaGalCer (C12) (which triggers NKT cells but does not activate NK cells) fails to enhance bone marrow graft rejection. Our results show betaGalCer (C12) can effectively discriminate between NKT- and NK-mediated responses in vivo. These results indicate the use of different TCR-binding ceramides can provide a unique approach for understanding the intricate immunoregulatory contributions of these two cell types.  相似文献   

16.
Human V alpha 24+ NKT cells with an invariant TCR (V alpha 24-J alpha Q) have been shown to be specifically activated by synthetic glycolipids such as alpha-galactosylceramide and alpha-glucosylceramide in a CD1d-restricted and V alpha 24 TCR-mediated manner. We recently characterized V alpha 24+ CD4- CD8- double negative (DN) NKT cells using alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. Here, we compare V alpha 24+ CD4+ NKT cells with human V alpha 24+ DN NKT cells from the same donor using alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. Human V alpha 24+ CD4+ NKT cells were phenotypically and functionally similar to the human V alpha 24+ DN NKT cells characterized previously. Both of them use V alpha 24-J alpha Q-V beta 11 TCR and express CD161 (NKR-P1A), but not the other NK receptors tested so far. They also produce cytokines such as IL-4 and IFN-gamma, and, in regard to IL-4 production, V alpha 24+ CD4+ NKT cells produce more IL-4 than V alpha 24+ DN NKT cells. The cells exhibit marked cytotoxic activity against the U937 tumor cell line, but not against the NK target cell line, K562. Although at least some of the factors responsible for the stimulation of V alpha 24+ NKT cells have been clarified, little is known regarding the killing phase of these cells. Here we show that the cytotoxic activity of V alpha 24+ NKT cells against U937 cells is mediated mainly through the perforin pathway and that ICAM-1/LFA-1 as well as CD44/hyaluronic acid interactions are important for the effector phase of V alpha 24+ NKT cell-mediated cytotoxicity against U937 cells.  相似文献   

17.
The liver lymphocyte population is enriched with natural killer (NK) cells, which play a key role in host defense against viral infection and tumor transformation. Recent evidence from animal models suggests that NK cells also play an important role in inhibiting liver fibrosis by selectively killing early or senescence activated hepatic stellate cells (HSCs) and by producing the anti-fibrotic cytokine IFN-γ. Furthermore, clinical studies have revealed that human NK cells can kill primary human HSCs and that the ability of NK cells from HCV patients to kill HSCs is enhanced and correlates inversely with the stages of liver fibrosis. IFN-α treatment enhances, while other factors (e.g., alcohol, TGF-β) attenuate, the cytotoxicity of NK cells against HSCs, thereby differentially regulating liver fibrogenesis. In addition, the mouse liver lymphocyte population is also enriched for natural killer T (NKT) cells, whereas human liver lymphocytes have a much lower percentage of NKT cells. Many studies suggest that NKT cells promote liver fibrogenesis by producing pro-fibrotic cytokines such as IL-4, IL-13, hedgehog ligands, and osteopontin; however, NKT cells may also attenuate liver fibrosis under certain conditions by killing HSCs and by producing IFN-γ. Finally, the potential for NK and NKT cells to be used as therapeutic targets for anti-fibrotic therapy is discussed. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

18.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

19.
CD1d-restricted natural killer T (NKT) cells are innate lymphocytes that play a regulatory role during an immune response. The identification of alpha-galactosylceramide (alpha-GalCer), a marine sponge-derived glycosphingolipid, as a potent stimulator of NKT cells led many laboratories to investigate the effects of NKT cell activation on the regulation of immune responses. These studies revealed that alpha-GalCer induces rapid and robust cytokine production by NKT cells, secondary activation of a variety of innate and adaptive immune cells, and modulation of Th cell responses. Further, alpha-GalCer influences disease progression in a variety of experimental models of autoimmunity and inflammation in mice, including models for type 1 diabetes, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, and atherosclerosis. While these studies have raised significant enthusiasm for manipulation of NKT cells as a means of preventing autoimmunity in the clinical setting, there are significant concerns regarding the safety of repeated alpha-GalCer injections in human subjects.  相似文献   

20.
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号