首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AZD8055 is an ATP-competitive inhibitor of mammalian target of rapamycin (mTOR) that forms two multiprotein complexes, mTORC1 and mTORC2, and negatively regulates autophagy. We demonstrate that AZD8055 stimulates and potentiates chemotherapy-mediated autophagy, as shown by LC3I-II conversion and down-regulation of the ubiquitin-binding protein p62/sequestosome 1. AZD8055-induced autophagy was pro-survival as shown by its ability to attenuate cell death and DNA damage (p-H2AX), and to enhance clonogenic survival by cytotoxic chemotherapy. Autophagy inhibition by siRNA against Beclin 1 or LC3B, or by chloroquine, partially reversed the cytoprotective effect of AZD8055 that was independent of cell cycle inhibition. The pro-survival role of autophagy was confirmed using ectopic expression of Beclin 1 that conferred cytoprotection. To determine whether autophagy-mediated down-regulation of p62/sequestosome 1 contributes to its pro-survival role, we generated p62 knockdown cells using shRNA that showed protection from chemotherapy-induced cell death and DNA damage. We also overexpressed wild-type (wt) p62 that promoted chemotherapy-induced cell death, whereas mutated p62 at functional domains (PB1, UBA) failed to do so. The ability of ectopic wt p62 to promote cell death was blocked by AZD8055. AZD8055 was shown to inhibit phosphorylation of the autophagy-initiating kinase ULK1 at Ser(757) and inhibited known targets of mTORC1 (p-mTOR Ser(2448), p70S6K, p-S6, p4EBP1) and mTORC2 (p-mTOR Ser(2481), p-AKT Ser(473)). Knockdown of mTOR, but not Raptor or Rictor, reduced p-ULK1 at Ser(757) and enhanced chemotherapy-induced autophagy that resulted in a similar cytoprotective effect as shown for AZD8055. In conclusion, AZD8055 inhibits mTOR kinase and ULK1 phosphorylation to induce autophagy whose pro-survival effect is due, in part, to down-regulation of p62.  相似文献   

2.
The PI3K/mammalian Target of Rapamycin (mTOR) pathway is often aberrantly activated in rhabdomyosarcoma (RMS) and represents a promising therapeutic target. Recent evaluation of AZD8055, an ATP-competitive mTOR inhibitor, by the Preclinical Pediatric Testing Program showed in vivo antitumor activity against childhood solid tumors, including RMS. Therefore, in the present study, we searched for AZD8055-based combination therapies. Here, we identify a new synergistic lethality of AZD8055 together with ABT-737, a BH3 mimetic that antagonizes Bcl-2, Bcl-xL, and Bcl-w but not Mcl-1. AZD8055 and ABT-737 cooperate to induce apoptosis in alveolar and embryonal RMS cells in a highly synergistic fashion (combination index < 0.2). Synergistic induction of apoptosis by AZD8055 and ABT-737 is confirmed on the molecular level, as AZD8055 and ABT-737 cooperate to trigger loss of mitochondrial membrane potential, activation of caspases, and caspase-dependent apoptosis that is blocked by the pan-caspase inhibitor Z-VAD-fmk. Similar to AZD8055, the PI3K/mTOR inhibitor NVP-BEZ235, the PI3K inhibitor NVP-BKM120 and Akt inhibitor synergize with ABT-737 to trigger apoptosis, whereas no cooperativity is found for the mTOR complex 1 inhibitor RAD001. Interestingly, molecular studies reveal a correlation between the ability of different PI3K/mTOR inhibitors to potentiate ABT-737-induced apoptosis and to suppress Mcl-1 protein levels. Importantly, knockdown of Mcl-1 increases ABT-737-induced apoptosis similar to AZD8055/ABT-737 cotreatment. This indicates that AZD8055-mediated suppression of Mcl-1 protein plays an important role in the synergistic drug interaction. By identifying a novel synergistic interaction of AZD8055 and ABT-737, our findings have important implications for the development of molecular targeted therapies for RMS.  相似文献   

3.
Uveal melanomas possess activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT/mammalian Target of Rapamycin (mTOR) pathways. MAPK activation occurs via somatic mutations in the heterotrimeric G protein subunits GNAQ and GNA11 for over 70% of tumors and less frequently via V600E BRAF mutations. In this report, we describe the impact of dual pathway inhibition upon uveal melanoma cell lines with the MEK inhibitor selumetinib (AZD6244/ARRY-142886) and the ATP-competitive mTOR kinase inhibitor AZD8055. While synergistic reductions in cell viability were observed with AZD8055/selumetinib in both BRAF and GNAQ mutant cell lines, apoptosis was preferentially induced in BRAF mutant cells only. In vitro apoptosis assay results were predictive of in vivo drug efficacy as tumor regressions were observed only in a BRAF mutant xenograft model, but not GNAQ mutant model. We went on to discover that GNAQ promotes relative resistance to AZD8055/selumetinib-induced apoptosis in GNAQ mutant cells. For BRAF mutant cells, both AKT and 4E-BP1 phosphorylation were modulated by the combination; however, decreasing AKT phosphorylation alone was not sufficient and decreasing 4E-BP1 phosphorylation was not required for apoptosis. Instead, cooperative mTOR complex 2 (mTORC2) and MEK inhibition resulting in downregulation of the pro-survival protein MCL-1 was found to be critical for combination-induced apoptosis. These results suggest that the clinical efficacy of combined MEK and mTOR kinase inhibition will be determined by tumor genotype, and that BRAF mutant malignancies will be particularly susceptible to this strategy.  相似文献   

4.
Using pyridino[2,3-D]pyrimidine as the core, total 13 pyridino[2,3-D]pyrimidine derivatives with different alkyl substituents at C2 site have been designed and synthesized to search for novel PI3Kα/mTOR dual inhibitors. Most of the target compounds showed potent mTOR inhibition activity with IC50 values ranging from single to double digit nanomole. Five target compounds exhibited pronounced PI3Kα inhibition activity. In vitro cellular assay indicated that most of the target compounds showed excellent antiproliferative activity, especially 3j whose potency against SKOV3 was 8-fold higher than the positive control AZD8055. In vitro metabolic stability study found that 3j had a comparable stability to that of AZD8055. More importantly, 3j showed better antitumor activity and pharmacokinetic properties in vivo as compared with AZD8055.  相似文献   

5.
It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation.  相似文献   

6.
High-risk neuroblastoma remains lethal in about 50% of patients despite multimodal treatment. Recent attempts to identify molecular targets for specific therapies have shown that Neuroblastoma RAS (NRAS) is significantly mutated in a small number of patients. However, few inhibitors for the potential treatment for NRAS mutant neuroblastoma have been investigated so far. In this in-vitro study, we show that MEK inhibitors AZD6244, MEK162 and PD0325901 block cell growth in NRAS mutant neuroblastoma cell lines but not in NRAS wild-type cell lines. Several studies show that mutant NRAS leads to PI3K pathway activation and combined inhibitors of PI3K/mTOR effectively block cell growth. However, we observed the combination of MEK inhibitors with PI3K or AKT inhibitors did not show synergestic effects on cell growth. Thus, we tested single mTOR inhibitors Everolimus and AZD8055. Interestingly, Everolimus and AZD8055 alone were sufficient to block cell growth in NRAS mutant cell lines but not in wild-type cell lines. We found that Everolimus alone induced apoptosis in NRAS mutant neuroblastoma. Furthermore, the combination of mTOR and MEK inhibitors resulted in synergistic growth inhibition. Taken together, our results show that NRAS mutant neuroblastoma can be targeted by clinically available Everolimus alone or in combination with MEK inhibitors which could impact future clinical studies.  相似文献   

7.
hnRNP A1 acts as a critical splicing factor in regulating many alternative splicing events in various physiological and pathophysiological progressions. hnRNP A1 is capable of regulating UVB-induced hdm2 gene alternative splicing according to our previous study. However, the biological function and underlying molecular mechanism of hnRNP A1 in cell survival and cell cycle in response to UVB irradiation are still unclear. In this study, silencing hnRNP A1 expression by siRNA transfection led to decreased cell survival after UVB treatment, while promoting hnRNP A1 by lentiviruse vector resulted in increased cell survival. hnRNP A1 remarkably enhanced PI3K/Akt/mTOR signaling pathway by increasing phosphorylation of Akt, mTOR and P70S6 protein. Inhibition of PI3K/Akt signaling by LY294002 suppressed the expression of hnRNP A1. While mTOR signaling inhibitors, rapamycin and AZD8055, did not influence hnRNP A1 expression in HaCaT cells, suggesting that hnRNP A1 may be an upstream mediator of mTOR signaling. Furthermore, hnRNP A1 could alleviate UVB-provoked cell cycle arrest at G0/G1 phase and promoted cell cycle progression at G2/M phase. Our results indicate that hnRNP A1 promotes cell survival and cell cycle progression following UVB radiation.  相似文献   

8.
9.
The tumor suppressor kinase LKB1 is mutated in a broad range of cancers however, the role of LKB1 mammary gland tumorigenesis is not fully understood. Evaluation of human breast cancer tissue microarrays, indicate that 31% of HER2 positive samples lacked LKB1 expression. To expand on these observations, we crossed STK11fl/fl mice with mice genetically engineered to express activated Neu/HER2-MMTV-Cre (NIC) under the endogenous Erbb2 promoter, to generate STK11−/−/NIC mice. In these mice, the loss of lkb1 expression reduced the latency of ErbB2-mediated tumorigenesis compared to the latency of tumorigenesis in NIC mice alone. Analysis of STK11−/−/NIC mammary tumors revealed hyperactivation of mammalian target of rapamycin (mTOR) through both mTORC1 and mTORC2 pathways as determined by the phosphorylation status of ribosomal protein S6 and AKT. Furthermore, STK11−/−/NIC mammary tumors had elevated ATP levels along with changes in metabolic enzymes and metabolites. The treatment of primary mammary tumor cells with specific mTOR inhibitors AZD8055 and Torin1, that target both mTOR complexes, attenuated mTOR activity and decreased expression of glycolytic enzymes. Our findings underscore the existence of a molecular interplay between LKB1-AMPK-mTORC1 and ErbB2-AKT-mTORC2 pathways with mTOR at its epicenter, suggestive that loss of LKB1 expression may serve as a marker for hyperactivated mTOR in HER2 positive breast cancer and warranting further investigation into therapeutics that target LKB1-AMPK-mTOR and glycolytic pathways.  相似文献   

10.
mTOR (mammalian target of rapamycin) forms two distinct types of complex, mTORC (mTOR complex) 1 and 2. Rapamycin inhibits some of the functions of mTORC1, whereas newly developed mTOR kinase inhibitors interfere with the actions of both types of complex. We have explored the effects of rapamycin and mTOR kinase inhibitors on general protein synthesis and, using a new stable isotope-labelling method, the synthesis of specific proteins. In HeLa cells, rapamycin only had a modest effect on total protein synthesis, whereas mTOR kinase inhibitors decreased protein synthesis by approx. 30%. This does not seem to be due to the ability of mTOR kinase inhibitors to block the binding of eIFs (eukaryotic initiation factors) eIF4G and eIF4E. Analysis of the effects of the inhibitors on the synthesis of specific proteins showed a spectrum of behaviours. As expected, synthesis of proteins encoded by mRNAs that contain a 5'-TOP (5'-terminal oligopyrimidine tract) was impaired by rapamycin, but more strongly by mTOR kinase inhibition. Several proteins not known to be encoded by 5'-TOP mRNAs also showed similar behaviour. Synthesis of proteins encoded by 'non-TOP' mRNAs was less inhibited by mTOR kinase inhibitors and especially by rapamycin. The implications of our findings are discussed.  相似文献   

11.
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that can sense environmental stimuli such as growth factors, energy state, and nutrients. It is essential for cell growth, proliferation, and metabolism, but dysregulation of mTOR signaling pathway is also associated with a number of human diseases. Encouraging data from experiments have provided sufficient evidence for the relationship between the mTOR signaling pathway and Alzheimer’s disease (AD). Upregulation of mTOR signaling pathway is thought to play an important role in major pathological processes of AD. The mTOR inhibitors such as rapamycin have been proven to ameliorate the AD-like pathology and cognitive deficits effectively in a broad range of animal models. Application of mTOR inhibitors indicates the potential value of reducing mTOR activity as an innovative therapeutic strategy for AD. In this review, we will focus on the recent process in understanding mTOR signaling pathway and the vital involvement of this signaling pathway in the pathology of AD, and discuss the application of mTOR inhibitors as potential therapeutic agents for the treatment of AD.  相似文献   

12.
The mammalian target of rapamycin (mTOR) which is part of two functionally distinct complexes, mTORC1 and mTORC2, plays an important role in vascular endothelial cells. Indeed, the inhibition of mTOR with an allosteric inhibitor such as rapamycin reduces the growth of endothelial cell in vitro and inhibits angiogenesis in vivo. Recent studies have shown that blocking mTOR results in the activation of other prosurvival signals such as Akt or MAPK which counteract the growth inhibitory properties of mTOR inhibitors. However, little is known about the interactions between mTOR and MAPK in endothelial cells and their relevance to angiogenesis. Here we found that blocking mTOR with ATP-competitive inhibitors of mTOR or with rapamycin induced the activation of the mitogen-activated protein kinase (MAPK) in endothelial cells. Downregulation of mTORC1 but not mTORC2 had similar effects showing that the inhibition of mTORC1 is responsible for the activation of MAPK. Treatment of endothelial cells with mTOR inhibitors in combination with MAPK inhibitors reduced endothelial cell survival, proliferation, migration and tube formation more significantly than either inhibition alone. Similarly, in a tumor xenograft model, the anti-angiogenic efficacy of mTOR inhibitors was enhanced by the pharmacological blockade of MAPK. Taken together these results show that blocking mTORC1 in endothelial cells activates MAPK and that a combined inhibition of MAPK and mTOR has additive anti-angiogenic effects. They also provide a rationale to target both mTOR and MAPK simultaneously in anti-angiogenic treatment.  相似文献   

13.
14.
15.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

16.
The optimization of a potent and highly selective series of dual mTORC1 and mTORC2 inhibitors is described. An initial focus on improving cellular potency whilst maintaining or improving other key parameters, such as aqueous solubility and margins over hERG IC50, led to the discovery of the clinical candidate AZD8055 (14). Further optimization, particularly aimed at reducing the rate of metabolism in human hepatocyte incubations, resulted in the discovery of the clinical candidate AZD2014 (21).  相似文献   

17.
Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase   总被引:1,自引:0,他引:1  
Elongation factor 2 kinase (eEF2k) phosphorylates and inactivates eEF2. Insulin induces dephosphorylation of eEF2 and inactivation of eEF2 kinase, and these effects are blocked by rapamycin, which inhibits the mammalian target of rapamycin, mTOR. However, the signalling mechanisms underlying these effects are unknown. Regulation of eEF2 phosphorylation and eEF2k activity is lost in cells in which phosphoinositide-dependent kinase 1 (PDK1) has been genetically knocked out. This is not due to loss of mTOR function since phosphorylation of another target of mTOR, initiation factor 4E-binding protein 1, is not defective. PDK1 is required for activation of members of the AGC kinase family; we show that two such kinases, p70 S6 kinase (regulated via mTOR) and p90(RSK1) (activated by Erk), phosphorylate eEF2k at a conserved serine and inhibit its activity. In response to insulin-like growth factor 1, which activates p70 S6 kinase but not Erk, regulation of eEF2 is blocked by rapamycin. In contrast, regulation of eEF2 by stimuli that activate Erk is insensitive to rapamycin, but blocked by inhibitors of MEK/Erk signalling, consistent with the involvement of p90(RSK1).  相似文献   

18.
Mammalian target of rapamycin complex 1 and 2 (mTORC1/2) are overactive in colorectal carcinomas; however, the first generation of mTOR inhibitors such as rapamycin have failed to show clinical benefits in treating colorectal carcinoma in part due to their effects only on mTORC1. The second generation of mTOR inhibitors such as PP242 targets mTOR kinase; thus, they are capable of inhibiting both mTORC1 and mTORC2. To examine the therapeutic potential of the mTOR kinase inhibitors, we treated a panel of colorectal carcinoma cell lines with PP242. Western blotting showed that the PP242 inhibition of mTORC2-mediated AKT phosphorylation at Ser 473 (AKTS473) was transient only in the first few hours of the PP242 treatment. Receptor tyrosine kinase arrays further revealed that PP242 treatment increased the phosphorylated epidermal growth factor receptor (EGFR) at Tyr 1068 (EGFRT1068). The parallel increase of AKTS473 and EGFRT1068 in the cells following PP242 treatment raised the possibility that EGFR phosphorylation might contribute to the PP242 incomplete inhibition of mTORC2. To test this notion, we showed that the combination of PP242 with erlotinib, an EGFR small molecule inhibitor, blocked both mTORC1 and mTORC2 kinase activity. In addition, we showed that the combination treatment inhibited colony formation, blocked cell growth and induced apoptotic cell death. A systemic administration of PP242 and erlotinib resulted in the progression suppression of colorectal carcinoma xenografts in mice. This study suggests that the combination of mTOR kinase and EGFR inhibitors may provide an effective treatment of colorectal carcinoma.  相似文献   

19.
The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)→Akt→mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.  相似文献   

20.
The mammalian target of rapamycin (mTOR) is centrally involved in growth, survival and metabolism. In cancer, mTOR is frequently hyperactivated and is a clinically validated target for drug development. Until recently, we have relied largely on the use of rapamycin to study mTOR function and its anticancer potential. Recent insights now indicate that rapamycin is a partial inhibitor of mTOR through allosteric inhibition of mTOR complex-1 (mTORC1) but not mTOR complex-2 (mTORC2). Both the mechanism of action and the cellular response to mTORC1 inhibition by rapamycin and related drugs may limit the effectiveness of these compounds as antitumor agents. We and others have recently reported the discovery of second-generation ATP-competitive mTOR kinase inhibitors (TKIs) that bind to the active sites of mTORC1 and mTORC2, thereby targeting mTOR signaling function globally (see refs. 1-4). The discovery of specific, active-site mTOR inhibitors has opened a new chapter in the 40-plus year old odyssey that began with the discovery of rapamycin from a soil sample collected on Easter Island (see Vézina C, et al. J Antibiot 1975). Here, we discuss recent studies that highlight the emergence of rapamycin-resistant mTOR function in protein synthesis, cell growth, survival and metabolism. It is shown that these rapamycin-resistant mTOR functions are profoundly inhibited by TKIs. A more complete suppression of mTOR global signaling network by the new inhibitors is expected to yield a deeper and broader antitumor response in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号