共查询到20条相似文献,搜索用时 0 毫秒
1.
Bunting RA Duffy KE Lamb RJ San Mateo LR Smalley K Raymond H Liu X Petley T Fisher J Beck H Flavell RA Alexopoulou L Ward CK 《Cellular immunology》2011,(1):9-16
Toll-like receptor 3 (TLR3) binds and signals in response to dsRNA and poly(I:C), a synthetic double stranded RNA analog. Activation of TLR3 triggers innate responses that may play a protective or detrimental role in viral infections or in immune-mediated inflammatory diseases through amplification of inflammation. Two monoclonal antibodies, CNTO4685 (rat anti-mouse TLR3) and CNTO5429 (CDRs from CNTO4685 grafted onto a mouse IgG1 scaffold) were generated and characterized. These mAbs bind the extracellular domain of mouse TLR3, inhibit poly(I:C)-induced activation of HEK293T cells transfected with mTLR3, and reduce poly(I:C)-induced production of CCL2 and CXCL10 by primary mouse embryonic fibroblasts. CNTO5429 decreased serum IL-6 and TNFα levels post-intraperitoneal poly(I:C) administration, demonstrating in vivo activity. In summary, specific anti-mTLR3 mAbs have been generated to assess TLR3 antagonism in mouse models of inflammation. 相似文献
2.
3.
Yang Shen Nan L. Li Jie Wang Baoming Liu Sandra Lester Kui Li 《The Journal of biological chemistry》2012,287(43):36404-36413
Members of the tripartite motif (TRIM) proteins are being recognized as important regulators of host innate immunity. However, specific TRIMs that contribute to TLR3-mediated antiviral defense have not been identified. We show here that TRIM56 is a positive regulator of TLR3 signaling. Overexpression of TRIM56 substantially potentiated extracellular dsRNA-induced expression of interferon (IFN)-β and interferon-stimulated genes (ISGs), while knockdown of TRIM56 greatly impaired activation of IRF3, induction of IFN-β and ISGs, and establishment of an antiviral state by TLR3 ligand and severely compromised TLR3-mediated chemokine induction following infection by hepatitis C virus. The ability to promote TLR3 signaling was independent of the E3 ubiquitin ligase activity of TRIM56. Rather, it correlated with a physical interaction between TRIM56 and TRIF. Deletion of the C-terminal portion of TRIM56 abrogated the TRIM56-TRIF interaction as well as the augmentation of TLR3-mediated IFN response. Together, our data demonstrate TRIM56 is an essential component of the TLR3 antiviral signaling pathway and reveal a novel role for TRIM56 in innate antiviral immunity. 相似文献
4.
5.
Bansal K Trinath J Chakravortty D Patil SA Balaji KN 《The Journal of biological chemistry》2011,286(42):37032-37044
Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus nonpathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-β-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-β-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-β-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-β-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-β-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-β-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics. 相似文献
6.
Nathaniel M. Green Krishna-Sulayman Moody Michelle Debatis Ann Marshak-Rothstein 《The Journal of biological chemistry》2012,287(47):39789-39799
The key step in the activation of autoreactive B cells is the internalization of nucleic acid containing ligands and delivery of these ligands to the Toll-like Receptor (TLR) containing endolysosomal compartment. Ribonucleoproteins represent a large fraction of autoantigens in systemic autoimmune diseases. Here we demonstrate that many uridine-rich mammalian RNA sequences associated with common autoantigens effectively activate autoreactive B cells. Priming with type I IFN increased the magnitude of activation, and the range of which RNAs were stimulatory. A subset of RNAs that contain a high degree of self-complementarity also activated B cells through TLR3. For the RNA sequences that activated predominantly through TLR7, the activation is proportional to uridine-content, and more precisely defined by the frequency of specific uridine-containing motifs. These results identify parameters that define specific mammalian RNAs as ligands for TLRs. 相似文献
7.
Several RNA viruses can be detected by the inflammasome, which promotes IL-1β and IL-18 secretion, but the underlying mechanisms of detection remain unclear. Cytosolic dsRNA is a replication intermediate of many RNA viruses. We show here that transfection of the dsRNA analogue poly I:C activates the NLRP3 inflammasome via a pathway requiring endosomal acidification. This detection is independent of the other poly I:C sensors: TLR3 and MDA5. These results suggest a mechanism by which cytosolic dsRNA produced during viral infection could activate the NLRP3 inflammasome. 相似文献
8.
Sara Palchetti Donatella Starace Paola De Cesaris Antonio Filippini Elio Ziparo Anna Riccioli 《The Journal of biological chemistry》2015,290(9):5470-5483
Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression. 相似文献
9.
Walseng E Furuta K Goldszmid RS Weih KA Sher A Roche PA 《The Journal of biological chemistry》2010,285(53):41749-41754
The expression of MHC class II (MHC-II) on the surface of antigen-presenting cells, such as dendritic cells (DCs), is tightly regulated during cellular activation. Many cells, including DCs, are activated following stimulation of innate Toll-like receptors (TLRs) by products of microorganisms. In the resting (immature) state, MHC-II is ubiquitinated in immature DCs and is rapidly degraded; however, after activation of these cells with MyD88-dependent TLR ligands, MHC-II ubiquitination is blocked, and MHC-II survival is prolonged. We now show that DC activation using MyD88-dependent TLR ligands, MyD88-independent TLR ligands, and even infection with the intracellular parasite Toxoplasma gondii leads to identical changes in MHC-II expression, ubiquitination, and surface stability, revealing a conserved role for enhanced MHC-II stability after DC activation by different stimuli. 相似文献
10.
11.
Chakraborty DC Mukherjee G Banerjee P Banerjee KK Biswas T 《The Journal of biological chemistry》2011,286(40):34542-34551
Vibrio cholerae hemolysin (HlyA) displays bipartite property while supervising macrophages (MΦ). The pore-forming toxin causes profound apoptosis within 3 h of exposure and in parallel supports activation of the defying MΦ. HlyA-induced apoptosis of MΦ remains steady for 24 h, is Toll-like receptor (TLR)-independent, and is driven by caspase-9 and caspase-7, thus involving the mitochondrial or intrinsic pathway. Cell activation is carried forward by time dependent up-regulation of varying TLRs. The promiscuous TLR association of HlyA prompted investigation, which revealed the β-prism lectin domain of HlyA simulated TLR4 up-regulation by jacalin, a plant lectin homologue besides expressing CD86 and type I cytokines TNF-α and IL-12. However, HlyA cytolytic protein domain up-regulated TLR2, which controlled CD40 for continuity of cell activation. Expression of TOLLIP before TLR2 and TLR6 abrogated TLR4, CD40, and CD86. We show that the transient expression of TOLLIP leading to curbing of activation-associated capabilities is a plausible feedback mechanism of MΦ to deploy TLR2 and prolong activation involving CD40 to encounter the HlyA cytolysin domain. 相似文献
12.
Toll-like receptor (TLR) activation relies on biochemical recognition of microbial molecules and localization of the TLR within specific cellular compartments. Cell surface TLRs largely recognize bacterial membrane components, and intracellular TLRs are exclusively involved in sensing nucleic acids. Here we show that TLR11, an innate sensor for the Toxoplasma protein profilin, is an intracellular receptor that resides in the endoplasmic reticulum. The 12 membrane-spanning endoplasmic reticulum-resident protein UNC93B1 interacts directly with TLR11 and regulates the activation of dendritic cells in response to Toxoplasma gondii profilin and parasitic infection in vivo. A deficiency in functional UNC93B1 protein abolished TLR11-dependent IL-12 secretion by dendritic cells, attenuated Th1 responses against T. gondii, and dramatically enhanced susceptibility to the parasite. Our results reveal that the association with UNC93B1 and the intracellular localization of TLRs are not unique features of nucleic acid-sensing TLRs but is also essential for TLR11-dependent recognition of T. gondii profilin and for host protection against this parasite. 相似文献
13.
14.
Chang CH Lai LC Cheng HC Chen KR Syue YZ Lu HC Lin WY Chen SH Huang HS Shiau AL Lei HY Qin J Ling P 《The Journal of biological chemistry》2011,286(9):7043-7051
The innate immune system elicits the first wave of immune responses against pathogen infection. Its operational modes are complex and have yet to be defined. Here, we report the identification of an innate immune regulator termed TAPE (TBK1-associated protein in endolysosomes), previously known as CC2D1A/Freud-1/Aki-1, which modulates the TLR3 and TLR4 pathways. We found that TAPE activated the TBK1, NF-κB, and ERK pathways leading to IFN-β and inflammatory cytokine induction. TAPE was shown to colocalize with endosomal marker Rab5 and lysosomal marker LAMP1 in mammalian cells, suggesting that TAPE resided in endolysosomes. Knockdown of TAPE selectively impaired the TLR3 and endocytic TLR4 pathways to IFN-β induction. Furthermore, TAPE interacted and synergized with Trif to activate IFN-β. TAPE knockdown failed to block Trif-mediated IFN-β induction, whereas Trif knockdown impaired the TLR3 and TAPE cooperation on IFN-β induction, suggesting that TAPE acts upstream of Trif. Together, our data demonstrate a central role for TAPE in linking TLR3 and TLR4 to innate immune defenses at an early step. 相似文献
15.
16.
17.
Kaposi’s sarcoma (KS) is strongly associated with KS herpes virus infection, and inflammation plays an important role in this disease. We have shown that human KS biopsy-derived SLK cells, which are of endothelial origin and form KS-like tumors in nude mice, express the viral RNA pattern recognition receptors Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma-differentiation-associated gene 5 (MDA5). Furthermore, SLK cells have enhanced release of IL-6, IL-8 (CXCL8), RANTES (CCL5), and IP-10 (CXCL10) proteins in response to the synthetic viral RNA analog poly(I:C). SiRNA knockdowns demonstrated that TLR3 mediates this inflammatory response to poly(I:C) in SLK cells. Furthermore, knockdown of the RNA receptor RIG-I resulted in enhanced chemokine release, in a TLR3 pathway-dependent manner. Thus, exposure of KS cells to viral RNA ligands can result in a TLR3-mediated increase in the secretion of inflammatory proteins associated with KS cell growth that may contribute to disease. 相似文献
18.
Erik De Clercq Dominique Hermann Wilhelm Guschlbauer 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1983,741(3):358-363
The effect of the interaction between poly(I)·poly(C) and cis-dichloro-diammineplatinum(II) (cis-Pt), its trans analogue and chloro-diethylene-triamminoplatinum(II) (dien-Pt) on interferon induction activity was investigated. The covalent monodentate fixation of the three compounds on N7 of inosine has different effects on the structure and thermostability of poly(I)·poly(C) which is well reflected by the interferon induction activity of the samples. Thus, the sandwich stabilization by dien-Pt at low binding ratios is manifested by an increased interferon induction and a high resistance towards RNAase degradation. The destabilization of the duplex by cis-Pt decreases interferon induction, accompanied by an increase in RNAase sensitivity of the complexes. In the case of trans-Pt the duplex structure is little perturbed and interferon induction is essentially maintained. 相似文献
19.
Jiin-Haur Chuang Hui-Ching Chuang Chao-Cheng Huang Chia-Ling Wu Yung-Ying Du Mei-Lang Kung Chih-Hao Chen San-Cher Chen Ming-Hong Tai 《Journal of biomedical science》2011,18(1):65
Background
Toll-like receptor-3 (TLR-3) is a critical component of innate immune system against dsRNA viruses and is expressed in the central nervous system. However, it remains unknown whether TLR3 may serve as a therapeutic target in human neuroblastoma (NB). 相似文献20.
Kirstan K. Meldrum Hongji Zhang Karen L. Hile Lyle L. Moldower Zizheng Dong Daniel R. Meldrum 《The Journal of biological chemistry》2012,287(48):40391-40399
IL-18 is an important mediator of obstruction-induced renal fibrosis and tubular epithelial cell injury independent of TGF-β1 activity. We sought to determine whether the profibrotic effect of IL-18 is mediated through Toll-like receptor 4 (TLR4). Male C57BL6 wild type and mice transgenic for human IL-18-binding protein were subjected to left unilateral ureteral obstruction versus sham operation. The kidneys were harvested 1 week postoperatively and analyzed for IL-18 production and TLR4 expression. In a separate arm, renal tubular epithelial cells (HK-2) were directly stimulated with IL-18 in the presence or absence of a TLR4 agonist, TLR4 antagonist, or TLR4 siRNA knockdown. Cell lysates were analyzed for TLR4, α-smooth muscle actin, and E-cadherin expression. TLR4 promotor activity, as well as AP-1 activation and the effect of AP-1 knockdown on TLR4 expression, was evaluated in HK-2 cells in response to IL-18 stimulation. The results demonstrate that IL-18 induces TLR4 expression during unilateral ureteral obstruction and induces TLR4 expression in HK-2 cells via AP-1 activation. Inhibition of TLR4 or knockdown of TLR4 gene expression in turn prevents IL-18-induced profibrotic changes in HK-2 cells. These results suggest that IL-18 induces profibrotic changes in tubular epithelial cells via increased TLR4 expression/signaling. 相似文献