首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the role Fgf signalling in skin and hair follicle development, we analysed the phenotype of mice deficient for Fgfr2-IIIb and its main ligand Fgf10. These studies showed that the severe epidermal hypoplasia found in mice null for Fgfr2-IIIb is caused by a lack of the basal cell proliferation that normally results in a stratified epidermis. Although at term the epidermis of Fgfr2-IIIb null mice is only two to three cells thick, it expresses the classical markers of epidermal differentiation and establishes a functional barrier. Mice deficient for Fgf10 display a similar but less severe epidermal hypoplasia. By contrast, Fgfr2-IIIb-/-, but not Fgf10-/-, mice produced significantly fewer hair follicles, and their follicles were developmentally retarded. Following transplantation onto nude mice, grafts of Fgfr2-IIIb-/- skin showed impaired hair formation, with a decrease in hair density and the production of abnormal pelage hairs. Expression of Lef1, Shh and Bmp4 in the developing hair follicles of Fgfr2-IIIb-/- mice was similar to wild type. These results suggest that Fgf signalling positively regulates the number of keratinocytes needed to form a normal stratified epidermis and to initiate hair placode formation. In addition, Fgf signals are required for the growth and patterning of pelage hairs.  相似文献   

2.
小鼠皮肤及其毛囊早期发育的组织学观察   总被引:1,自引:0,他引:1  
目的探讨小鼠皮肤及其毛囊的早期发育规律。方法采用常规石蜡切片和H-E染色技术,观察昆明系小鼠出生前后皮肤及其毛囊的形态发育。结果(1)孕龄16 d胎鼠的皮肤表面形成凹凸不平的深褶皱,但在生后3 d~5 d不仅皱褶的数量减少,而且凹陷变浅;(2)胎鼠孕龄16 d至19 d,其皮肤的表皮、真皮及皮肤总厚度呈现平稳增厚。但是,出生后,其表皮、真皮和皮肤总厚度急剧降低;在生后第1天至第9天,表皮呈现平稳增厚,而真皮则在生后快速厚度,第7天达到最高值(1861.50μm);(3)孕龄16 d的胎鼠皮肤中可观察到初级毛囊,至生后第7天其密度呈现平稳增长;与其相比,次级毛囊从18 d胎鼠开始出现,其密度增长非常迅速,出生后第7天达到1257.14/mm;毛囊的总密度与次级毛囊呈现相似的变化趋势。出生第7天后,由于毛囊的数量急剧增加,无法观察初级毛囊和次级毛囊的变化规律;(4)初级毛囊和次级毛囊的长度与深度变化在出生前后的相对缓慢,与其相比在第3天以后至第7天呈现迅速变化趋势。结论小鼠皮肤及其毛囊的生长性发育发生在胎儿晚期和生后的早期,而其周期性变化可能从出生后的第9天以后开始出现;在孕期16 d至生后第7天可能是检测毛囊特异性基因表达的最佳期。  相似文献   

3.
The homeostasis of both cornea and hair follicles depends on a constant supply of progeny cells produced by populations of keratin (K) 14-expressing stem cells localized in specific niches. To investigate the potential role of Co-factors of LIM domains (Clims) in epithelial tissues, we generated transgenic mice expressing a dominant-negative Clim molecule (DN-Clim) under the control of the K14 promoter. As expected, the K14 promoter directed high level expression of the transgene to the basal cells of cornea and epidermis, as well as the outer root sheath of hair follicles. In corneal epithelium, the transgene expression causes decreased expression of adhesion molecule BP180 and defective hemidesmosomes, leading to detachment of corneal epithelium from the underlying stroma, which in turn causes blisters, wounds and an inflammatory response. After a period of epithelial thinning, the corneal epithelium undergoes differentiation to an epidermis-like structure. The K14-DN-Clim mice also develop progressive hair loss due to dysfunctional hair follicles that fail to generate hair shafts. The number of hair follicle stem cells is decreased by at least 60% in K14-DN-Clim mice, indicating that Clims are required for hair follicle stem cell maintenance. In addition, Clim2 interacts with Lhx2 in vivo, suggesting that Clim2 is an essential co-factor for the LIM homeodomain factor Lhx2, which was previously shown to play a role in hair follicle stem cell maintenance. Together, these data indicate that Clim proteins play important roles in the homeostasis of corneal epithelium and hair follicles.  相似文献   

4.
Group X secretory PLA(2) (sPLA(2)-X) is expressed in neutrophils and plays a role in the pathogenesis of neutrophil-mediated tissue inflammation and injury. This study tested the hypothesis that sPLA(2)-X in neutrophils may contribute to the pathogenesis of abdominal aortic aneurysms (AAA) using sPLA(2)-X(-/-) mice. AAA was created by application of CaCl(2) to external surface of aorta. As a result, the aortas of sPLA(2)-X(-/-) mice had smaller diameters (percent increase from baseline; 24.8 ± 3.5% vs. 49.9 ± 9.1%, respectively; P < 0.01), a reduced grade of elastin degradation, and lower activities of elastase and gelatinase (26% and 19% lower, respectively) after CaCl(2) treatment compared with sPLA(2)-X(+/+) mice. In sPLA(2)-X(+/+) mice, immunofluorescence microscopic images showed that the immunoreactivity of sPLA(2)-X was detected only in neutrophils within aortic walls 3 days, 1, 2, and 6 wk after CaCl(2) treatment, whereas the immunoreactivity was not detected in macrophages or mast cells in aortic walls. sPLA(2)-X immunoreactivity also was colocalized in cells expressing matrix metalloproteinase (MMP)-9. Neutrophils isolated from sPLA(2)-X(-/-) mice had lower activities of elastase, gelatinase, and MMP-9 in response to stimuli compared with sPLA(2)-X(+/+) mice. The attenuated release of elastase and gelatinase from sPLA(2)-X(-/-) neutrophils was reversed by exogenous addition of mouse sPLA(2)-X protein. The adoptive transfer of sPLA(2)-X(+/+) neutrophils days 0 and 3 after CaCl(2) treatment reversed aortic diameters and elastin degradation grades in the lethally irradiated sPLA(2)-X(+/+) mice reconstituted with sPLA(2)-X(-/-) bone marrow to an extent similar to that seen in sPLA(2)-X(+/+) mice. In conclusion, sPLA(2)-X in neutrophils plays a pathogenic role in AAA in a mice model.  相似文献   

5.
Among the many mammalian secreted phospholipase A2 (sPLA2) enzymes, PLA2G3 (group III secreted phospholipase A2) is unique in that it possesses unusual N- and C-terminal domains and in that its central sPLA2 domain is homologous to bee venom PLA2 rather than to other mammalian sPLA2s. To elucidate the in vivo actions of this atypical sPLA2, we generated transgenic (Tg) mice overexpressing human PLA2G3. Despite marked increases in PLA2 activity and mature 18-kDa PLA2G3 protein in the circulation and tissues, PLA2G3 Tg mice displayed no apparent abnormality up to 9 months of age. However, alterations in plasma lipoproteins were observed in PLA2G3 Tg mice compared with control mice. In vitro incubation of low density (LDL) and high density (HDL) lipoproteins with several sPLA2s showed that phosphatidylcholine was efficiently converted to lysophosphatidylcholine by PLA2G3 as well as by PLA2G5 and PLA2G10, to a lesser extent by PLA2G2F, and only minimally by PLA2G2A and PLA2G2E. PLA2G3-modified LDL, like PLA2G5- or PLA2G10-treated LDL, facilitated the formation of foam cells from macrophages ex vivo. Accumulation of PLA2G3 was detected in the atherosclerotic lesions of humans and apoE-deficient mice. Furthermore, following an atherogenic diet, aortic atherosclerotic lesions were more severe in PLA2G3 Tg mice than in control mice on the apoE-null background, in combination with elevated plasma lysophosphatidylcholine and thromboxane A2 levels. These results collectively suggest a potential functional link between PLA2G3 and atherosclerosis, as has recently been proposed for PLA2G5 and PLA2G10.  相似文献   

6.
Hair induction in the adult glabrous epidermis by the embryonic dermis was compared with that by the adult dermis. Recombinant skin, composed of the adult sole epidermis and the embryonic dermis containing dermal condensations (DC), was transplanted onto the back of nude mice. The epidermis of transplants formed hairs. Histology on the induction process demonstrated the formation of placode-like tissues, indicating that the transplant produces hair follicles through a mechanism similar to that underlying hair follicle development in the embryonic skin. An isolated adult rat sole skin piece, inserted with either an aggregate of cultured dermal papilla (DP) cells or an intact DP between its epidermis and dermis, was similarly transplanted. The transplant produced hair follicles. Histology showed that the epidermis in both cases surrounded the aggregates of DP cells. The epidermis never formed placode-like tissues. Thus, it was concluded that the adult epidermal cells recapitulate the embryonic process of hair follicle development when exposed to DC, whereas they get directly into the anagen of the hair cycle when exposed to DP. The expression pattern of Edar and Shh genes, and P-cadherin protein during the hair follicle development in the two types of transplants supported the above conclusion.  相似文献   

7.
Given the potent hydrolyzing activity toward phosphatidylcholine, group X secretory phospholipase A(2) (sPLA(2)-X) elicits a marked release of arachidonic acid linked to the potent production of lipid mediators in various cell types. We have recently shown that sPLA(2)-X can also act as a ligand for mouse phospholipase A(2) receptor (PLA(2)R). Here, we found that sPLA(2)-X was internalized and degraded via binding to PLA(2)R associated with the diminished prostaglandin E(2) (PGE(2)) formation in PLA(2)R-expressing Chinese hamster ovary (CHO) cells compared to CHO cells. Indirect immunocytochemical analysis revealed that internalized sPLA(2)-X was co-localized with PLA(2)R in the punctate structures in PLA(2)R-expressing CHO cells. Moreover, in mouse osteoblastic MC3T3-E(1) cells that endogenously express the PLA(2)R, the internalized sPLA(2)-X was localized in lysosomes. These findings demonstrate that PLA(2)R acts as a clearance receptor for sPLA(2)-X to suppress its strong enzymatic activity.  相似文献   

8.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   

9.
Phospholipase A(2) receptor (PLA(2)R) mediates various biological responses elicited by group IB secretory phospholipase A(2) (sPLA(2)-IB). The recently cloned group X sPLA(2) (sPLA(2)-X) possesses several structural features characteristic of sPLA(2)-IB. Here, we detected a specific binding site of sPLA(2)-X in mouse osteoblastic MC3T3-E(1) cells. Cross-linking experiments demonstrated its molecular weight (180 kDa) to be similar to that of PLA(2)R. In fact, sPLA(2)-X was found to bind the recombinant PLA(2)R expressed in COS-7 cells, and its specific binding detected in mouse lung membranes was abolished by the deficiency of PLA(2)R. These findings demonstrate sPLA(2)-X to be one of the high-affinity ligands for mouse PLA(2)R.  相似文献   

10.
Lin HY  Kao CH  Lin KM  Kaartinen V  Yang LT 《PloS one》2011,6(1):e15842

Background

Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.

Methodology and Principal Findings

We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.

Significance

our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells.  相似文献   

11.
RXR-alpha is the most abundant of the three retinoid X receptors (RXRs) in the epidermis. In this study, we have used Cre-mediated recombination to selectively disrupt the mouse gene for RXR-alpha in epidermal and hair follicle keratinocytes. We show that RXR-alpha is apparently dispensable for prenatal epidermal development, while it is involved in postnatal skin maturation. After the first hair pelage, mutant mice develop a progressive alopecia, histologically characterised by the destruction of hair follicle architecture and the formation of utriculi and dermal cysts in adult mice. Our results demonstrate that RXR-alpha plays a key role in anagen initiation during the hair follicle cycle. In addition, RXR-alpha ablation results in epidermal interfollicular hyperplasia with keratinocyte hyperproliferation and aberrant terminal differentiation, accompanied by an inflammatory reaction of the skin. Our data not only provide genetic evidence that RXR-alpha/VDR heterodimers play a major role in controlling hair cycling, but also suggest that additional signalling pathways mediated by RXR-alpha heterodimerised with other nuclear receptors are involved in postnatal hair follicle growth, and homeostasis of proliferation/differentiation of epidermal keratinocytes and of the skin's immune system.  相似文献   

12.
miRNA在调控皮肤和毛囊发育中的作用   总被引:3,自引:0,他引:3  
表皮发生和毛囊的周期性再生涉及一系列基因的激活和沉默。近年来的研究表明, miRNA的表达谱在表皮和毛囊组织中存在组织特异性, 在毛囊周期性发育中存在阶段特异性。大量miRNA参与表皮和毛囊的发生, 色素的沉着以及毛囊的周期性发育过程, 不同类型细胞中的miRNA通过与信号通路和调控因子相互作用形成了一个全方位、多层次的网络调控系统。文章综述了miRNA调控表皮内稳态和毛囊周期性发育的一些研究 进展, 旨在丰富miRNA参与的基因调控网路的研究, 进而为人工调控miRNA进行疾病治疗和分子育种提供 帮助。  相似文献   

13.
Melanocytes in human skin reside both in the epidermis and in the matrix and outer root sheath of anagen hair follicles. Comparative study of melanocytes in these different locations has been difficult as hair follicle melanocytes could not be cultured. In this study we used a recently described method of growing hair follicle melanocytes to characterize and compare hair follicle and epidermal melanocytes in the scalp of the same individual. Three morphologically and antigenically distinct types of melanocytes were observed in primary culture. These included (1) moderately pigmented and polydendritic melanocytes derived from epidermis; (2) small, bipolar, amelanotic melanocytes; and (3) large, intensely pigmented melanocytes; the latter two were derived from hair follicles. The three sub-populations of cells all reacted with melanocyte-specific monoclonal antibody. Epidermal and amelanotic hair follicle melanocytes proliferated well in culture, whereas the intensely pigmented hair follicle melanocytes did not. Amelanotic hair follicle melanocytes differed from epidermal melanocytes in being less differentiated, and they expressed less mature melanosome antigens. In addition, hair follicle melanocytes expressed some antigens associated with alopecia areata, but not antigens associated with vitiligo, whereas the reverse was true for epidermal melanocytes. Thus, antigenically different populations of melanocytes are present in epidermis and hair follicle. This could account for the preferential destruction of hair follicle melanocytes in alopecia areata and of epidermal melanocytes in vitiligo.  相似文献   

14.
40 min after a single injection of 50 µCi of tritiated thymidine a 3 mm punch of DBA-1 mouse skin contains about 1000 dpm. This value remains constant for at least 48 hr after injection. 50 hair follicles contain about 40 dpm, and from these values the activity calculated to reside in the basal layer of a 3 mm punch of skin is 760 dpm. These values also remain constant with time after injection. Fresh punches of skin contain much more activity. The fixative-soluble fraction (the difference between fresh and fixed values) decays slowly with time. The values for DBA-2 mice are similar. Plucking the hair from the follicles appears immediately to increase the size of the fixative-soluble fraction and decrease the fixed tissue values to about 500 dpm per punch for whole skin and about 1 dpm per 50 follicles for DBA-1. Thus almost all the activity is restricted to the epidermis. The fixative-soluble fraction returns approximately to the unplucked value between 24 and 48 hr after plucking. However, during this period the fixed tissue values are rising rapidly as stimulated cells enter S. It appears that in both strains labeled material remains available for incorporation into stimulated cells for at least 48 hr after a single injection. The amount persisting appears to decrease with time. The whole-fixed skin, the hair follicles, and the epidermis all contain cells that are capable of becoming labeled after stimulation 8–48 hr after an injection. The label in question does not become incorporated into normal cycling skin or hair follicle cells. It is concluded that the DNA precursor pool is possibly connected with G0 cells and that both the hair follicle and the basal layer of the epidermis contain these resting cells.  相似文献   

15.
16.
In an effort to elucidate the functions of secreted phospholipase A2 (sPLA2) enzymes in vivo, we generated transgenic (Tg) mice for group V sPLA2 (sPLA2-V) and group X sPLA2 (sPLA2-X), which act potently on phosphatidylcholine in vitro.We found that sPLA2-V Tg mice died in the neonatal period because of respiratory failure. The lungs of sPLA2-V Tg mice exhibited atelectasis with thickened alveolar walls and narrow air spaces, accompanied by infiltration of macrophages and only modest changes in eicosanoid levels. This severe pulmonary defect in sPLA2-V Tg mice was attributable to marked reduction of the lung surfactant phospholipids, phosphatidylcholine and phosphatidylglycerol. Given that the expression of sPLA2-V is greatly elevated in human lungs with severe inflammation, our present results raise the intriguing possibility that this isozyme may contribute to ongoing surfactant hydrolysis often observed in the lungs of patients with respiratory distress syndrome. In contrast, sPLA2-X Tg neonates displayed minimal abnormality of the respiratory tract with normal alveolar architecture and surfactant composition. This unexpected result was likely because sPLA2-X protein existed as an inactive zymogen in most tissues. The active form of sPLA2-X was detected in tissues with inflammatory granulation in sPLA2-X Tg mice. These results suggest that sPLA2-X mostly remains inactive under physiological conditions and that its proteolytic activation occurs during inflammation or other as yet unidentified circumstances in vivo.  相似文献   

17.
Mice homozygous for the recessive patchwork (pwk) mutation are characterized by a variegated pigment pattern with a mixture of unpigmented and normally pigmented hairs. The pigmented hair bulbs contain functional melanocytes. By contrast, the unpigmented hair bulbs contain no melanocytes. This lack results from the death of melanoblasts in the hair follicle at the end of embryogenesis. Here, we report that melanoblasts and melanocytes are found in the epidermis of pwk/pwk mice. Furthermore, these epidermal pigment cells are able to colonize new hair follicles after skin wounding. Despite the presence of epidermal pigment cells with a colonization potential, a follicle that had produced an unpigmented hair produces a new unpigmented hair during the successive hair growth cycles. This hair color continuity is also true for the pigmented hair follicles. Thus, in normal conditions, the hair acts as an independent functional unit as regards its pigment cells population.  相似文献   

18.
Epidermal growth factor receptor (EGFR) is a key regulator of keratinocyte biology. However, the physiological role of EGFR in vivo has not been well established. To analyze the role of EGFR in skin, we have generated transgenic mice expressing an EGFR dominant negative mutant in the basal layer of epidermis and outer root sheath of hair follicles. Mice expressing the mutant receptor display short and waved pelage hair and curly whiskers during the first weeks of age, but subsequently pelage and vibrissa hairs become progressively sparser and atrophic. Eventually, most mice present severe alopecia. Histological examination of the skin of transgenic mice shows striking alterations in the development of hair follicles, which fail to enter into catagen stage. These alterations eventually lead to necrosis and disappearance of the follicles, accompanied by strong infiltration of the skin with inflammatory elements. The interfollicular epidermis of these mice shows marked hyperplasia, expression of hyperproliferation-associated keratin K6 and increased 5-bromo-2-deoxyuridine incorporation. EGFR function was inhibited in transgenic skin keratinocytes, since in vivo and in vitro autophosphorylation of EGFR was almost completely abolished on EGF stimulation. These results implicate EGFR in the control of hair cycle progression, and provide new information about its role in epidermal growth and differentiation.  相似文献   

19.
目的研究角蛋白15(K15)在大鼠皮肤发育中的表达状况,定位表皮干细胞.方法以不同年龄大鼠背部皮肤为标本,用组织学方法,观察出生后大鼠皮肤的形态发育变化;以K15单克隆抗体为一抗,进行免疫组织化学染色,观察K15在大鼠皮肤中的表达状况.结果(1)组织学方法显示,随着年龄的增长,大鼠背部表皮细胞层数逐渐变少;在毛囊的生长周期中,以隆突区为界,毛囊上段为恒定区,下段呈周期性变化(2)免疫组化染色显示,毛囊隆突区细胞胞浆表达K15,随年龄的增长,K15阳性细胞出现在毛母质细胞区、毛囊外根鞘和表皮基底层.结论表皮干细胞位于毛囊隆突区,与表皮的更新和毛囊的周期性变化有关.  相似文献   

20.
c-Abl作为非受体酪氨酸激酶家族的成员,参与调节多个组织器官的发育过程,如神经、血管及骨骼等。c-Abl的异常激活也往往导致神经退行性疾病或肿瘤的发生。到目前为止,c-Abl在皮肤和毛发器官中的研究非常少。本研究首先分析了c-Abl基因在皮肤和毛囊中的动态表达情况,发现在毛囊上皮有丰富的表达,然后利用表皮特异性工具小鼠K14-Cre将c-Abl基因在表皮敲除,发现毛囊由静息期向生长期的转换略有加快。小鼠脱毛实验发现,当所有毛囊都从头开始再生时,突变鼠的毛囊起始比对照小鼠更快。这些结果均表明,在表皮敲除c-Abl基因能够导致毛发循环和毛囊再生的加快。进一步的研究发现,以上表型可能是c-Abl通过调节BMP信号通路造成的。我们的工作首次研究了c-Abl基因在皮肤毛囊中的动态表达,揭示了c-Abl通过BMP信号通路调节毛囊再生的机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号