共查询到20条相似文献,搜索用时 0 毫秒
1.
The conformations of the gamma chain COOH terminus of intact fibrinogen and various fragments containing this region have been compared by an immunochemical analysis. Location of a major epitope in the sequence gamma 391-405 was successfully predicted from a hydrophobicity profile. An antibody population specific for the native epitope within the gamma 391-405 segment was isolated by immunoadsorption. Between 19.2 and 22.8% of antibodies were obtained from three different antisera, indicating that this region represents one of the major epitopes of native fibrinogen. Anti-gamma 391-405(N) antibodies were used to determine the value of Kconf, the equilibrium constant for the interconversion of the non-native and native conformations of this epitope. The measurements were done using native fibrinogen, fragments D1 and DD, gamma chain, and gamma 391-405. In addition, the effect of 5 M guanidine HCl on the conformation of fragments D1 and DD, which is known to abolish their antipolymerizing activity, was studied. Radioiodinated fibrinogen was used in the determination of Kconf, CI50%, and CIs (quantitative analytical parameters calculated from competitive inhibition radioimmunoassays) by measuring the competition between 125I-fibrinogen and the fibrinogen derivatives under study for binding to the immunochemically purified antibody. The measurements indicated that the epitope is unperturbed by iodination of fibrinogen and that 38.5% of fragment D1, 8.9% of fragment DD, 3.6% of the gamma chain, and less than 0.008% of the gamma 391-405 molecules adopt in aqueous solution the native conformation within the epitope. Denaturation of fragment D1 with 5 M guanidine HCl affected only slightly the conformation of this gamma chain determinant. More significant changes in the conformation were observed when fragment DD was denatured. The results suggest that long-range interactions are necessary for the stabilization of the native structure in the region of fibrinogen that interacts with the antibody and which is in close vicinity to the polymerization site, cross-linking site, and platelet recognition site. 相似文献
2.
The epsilon-amino group of Lys-40 alpha forms a salt bridge with the alpha-carboxyl group of beta chain in deoxyhemoglobin and is considered to impose a constraint upon hemoglobin tetramer, stabilizing the T quaternary structure. Hb Kariya, in which Lys-40 alpha is replaced by Glu, provides a unique opportunity to investigate the functional role of this salt bridge. Hb Kariya showed oxygen binding properties characterized by a high affinity, diminished cooperativity, a reduced alkaline Bohr effect, and a decreased effect of phosphates upon oxygen affinity. In deoxyHb Kariya the reactivity of the sulfhydryl groups of cysteins-93 beta with 4,4'-dipyridine disulfide was profoundly enhanced, being comparable to that for normal oxyhemoglobin (oxyHb A). The Soret band spectra, UV derivative spectra, and UV oxyminus-deoxy difference spectra indicated that oxyHb Kariya assumes a quaternary structure similar to that of oxyHb A whereas the T structure of deoxyHb Kariya is destabilized, and Hb Kariya remains predominantly in the R state upon deoxygenation. Resonance Raman scattering by deoxyHb Kariya showed that the Fe-N epsilon(proximal His) bond is less stretched than that of deoxyHb A. These experimental results provide structural basis for explaining the oxygen binding characteristics of Hb Kariya and further give direct evidence that the intersubunit salt bridge between Lys-40 alpha and the beta chain COOH terminus actually contributes to stabilization of the T quaternary structure, thereby playing a key role in cooperative oxygen binding by hemoglobin. The nature of another salt bridge between Asp-94 beta and the COOH-terminal His of beta chain was also discussed in comparison with the salt bridge involving Lys-40 alpha. 相似文献
3.
A simple theory, based on probability, is developed for the analysis of the interaction of multideterminant antigens with multispecific antisera in radioimmunoassays. The theory is completely general except for the assumptions that the determinants be unique and bind antibodies independently of one another. The analysis shows that the shape of the curve of bound/free as a function of the antigen concentration is very sensitive to the multiplicity of determinants. The predictive ability of the theory is illustrated for the case of antibodies to subregions of the N-terminal third of the beta chain of sickle hemoglobin, studied using antisera fractionated on affinity chromatographic columns of synthetic peptides. The implications for obtaining quantitative binding data by radioimmunoassay for natural antigens, which almost universally have more than one antigenic determinant on the same molecule, are discussed. 相似文献
4.
A dominant negative G alpha s mutant is rescued by secondary mutation of the alpha chain amino terminus. 总被引:6,自引:0,他引:6
The Gs protein alpha subunit, alpha s, stimulates the activity of adenylyl cyclase. The sequence 223Asp-Val-Gly-Gly-Gln227 in the alpha s polypeptide is predicted to interact with the gamma-phosphate of GTP and mediate the conformational change involved in alpha s activation. Mutation of the alpha s polypeptide within this region at Gly225----Thr had two demonstrative phenotypic effects when expressed in COS-1 cells: the mutant alpha s chain was ineffective in activating adenylyl cyclase and inhibited in a concentration-dependent manner the beta-adrenergic receptor stimulation of cAMP synthesis. Thus, the Gly225----Thr mutation alters the ability of GTP to activate the alpha s chain and when overexpressed the mutant polypeptide exerts a dominant negative phenotype. Mutation at the amino terminus which creates a constitutively active alpha s rescued the inhibited state of the Gly225----Thr mutant when both mutations were encoded in the same polypeptide. This finding defines the amino terminus as a functional regulatory domain controlling the properties of the GTP/GDP binding site of G protein alpha subunit polypeptide chains. 相似文献
5.
Conformation-specific monoclonal antibodies to the calcium-induced structure of protein C 总被引:2,自引:0,他引:2
Monoclonal antibodies to various domains of human protein C were characterized, and the cross-reactivity of these antibodies with other vitamin K-dependent proteins was explored. Three antibodies, JTC-1, -2, and -3 reacted with protein C only in the presence of Ca2+ and were shown to bind to the light chain of protein C. It is suggested that these antibodies recognize a gamma-carboxyglutamic acid domain-related conformational change induced by metal ions, evidenced by the fact that half-maximal binding was observed at calcium concentration of 0.5, 0.6, and 0.7 mM, respectively, by the fact that these antibodies, even in the presence of Ca2+, do not react with gamma-carboxyglutamic acid domainless protein C, and by the fact that Zn2+ and Tb3+ support binding in essentially the same way. Each cell line was stabilized by recloning five times. In addition each antibody had a single isoelectric point and was of the IgG1 kappa class. The interaction of antibodies JTC-1, -2; and -3 with protein C-Ca2+ was characterized by a single class of binding sites with Kd of 3.98 X 10(-9) M, 4.01 X 10(-9) M, and 6.76 X 10(-9) M, respectively. However, antibodies JTC-1, -2, and -3 bound to prothrombin-Ca2+ with Kd of 7.81 X 10(-9) M, 2.0 X 10(-7) M, and higher than 1.0 X 10(-5) M, respectively. In addition they had weak affinity for factor X in the presence of Ca2+. The results indicate that the antibodies JTC-1, -2, and -3 are conformation-specific monoclonal antibodies directed against an at least partially common metal ion-induced three-dimensional structure in protein C, prothrombin, and factor X. 相似文献
6.
M Amano K Chihara N Nakamura T Kaneko Y Matsuura K Kaibuchi 《The Journal of biological chemistry》1999,274(45):32418-32424
Rho-kinase is implicated in the phosphorylation of myosin light chain downstream of Rho, which is thought to induce smooth muscle contraction and stress fiber formation in non-muscle cells. Here, we examined the mode of action of inhibitors of Rho-kinase. The chemical compounds such as HA1077 and Y-32885 inhibited not only the Rho-kinase activity but also the activity of protein kinase N, one of the targets of Rho, but had less of an effect on the activity of myotonic dystrophy kinase-related Cdc42-binding kinase beta (MRCKbeta). The COOH-terminal portion of Rho-kinase containing Rho-binding (RB) and pleckstrin homology (PH) domains (RB/PH (TT)), in which point mutations were introduced to abolish the Rho binding activity, interacted with Rho-kinase and thereby inhibited the Rho-kinase activity, whereas RB/PH (TT) had no effect on the activity of protein kinase N or MRCKbeta, suggesting that the COOH-terminal region of Rho-kinase is a possible negative regulatory region of Rho-kinase. The expression of RB/PH (TT) specifically blocked the stress fiber and focal adhesion formation induced by the active form of Rho or Rho-kinase in NIH 3T3 cells, but not that induced by the active form of MRCKbeta or myosin light chain. Thus, RB/PH (TT) appears to specifically inhibit Rho-kinase in vivo. 相似文献
7.
Mammalian alpha 1- and beta 1-syntrophin bind to the alternative splice- prone region of the dystrophin COOH terminus 总被引:11,自引:3,他引:8 下载免费PDF全文
《The Journal of cell biology》1995,128(3):373-381
The carboxy-terminal region of dystrophin has been suggested to be crucially important for its function to prevent muscle degeneration. We have previously shown that this region is the locus that interacts with the sarcolemmal glycoprotein complex, which mediates membrane anchoring of dystrophin, as well as with the cytoplasmic peripheral membrane protein, A0 and beta 1-syntrophin (Suzuki, A., M. Yoshida, K. Hayashi, Y. Mizuno, Y. Hagiwara, and E. Ozawa. 1994. Eur. J. Biochem. 220:283- 292). In this work, by using the overlay assay technique developed previously, we further analyzed the dystrophin-syntrophin/A0 interaction. Two forms of mammalian syntrophin, alpha 1- and beta 1- syntrophin, were found to bind to very close but discrete regions on the dystrophin molecule. Their binding sites are located at the vicinity of the glycoprotein-binding site, and correspond to the amino acid residues encoded by exons 73-74 which are alternatively spliced out in some isoforms. This suggests that the function of syntrophin is tightly linked to the functional diversity among dystrophin isoforms. Pathologically, it is important that the binding site for alpha 1- syntrophin, which is predominantly expressed in skeletal muscle, coincides with the region whose deletion was suggested to result in a severe phenotype. In addition, A0, a minor component of dystrophin- associated proteins with a molecular mass of 94 kD which is immunochemically related to syntrophin, binds to the same site as beta 1-syntrophin. Finally, based on our accumulated evidence, we propose a revised model of the domain organization of dystrophin from the view point of protein-protein interactions. 相似文献
8.
Adult chicken hemoglobin is heterogeneous and contains two major components, AI and AII (1). The amino acid sequence of the alpha chain of the AI component from white leghorns (small A type) was determined and compared with that of the alpha chain of the AII component, previously determined by the authors (2). An unexpectedly large difference of 65 amino acids was found between these two chains. 相似文献
9.
Sequence of the clathrin heavy chain from Saccharomyces cerevisiae and requirement of the COOH terminus for clathrin function 总被引:8,自引:0,他引:8 下载免费PDF全文
The sequence of the clathrin heavy chain gene, CHC1, from Saccharomyces cerevisiae is reported. The gene encodes a protein of 1,653 amino acids that is 50% identical to the rat clathrin heavy chain (HC) (Kirchhausen, T., S. C. Harrison, E. P. Chow, R. J. Mattaliano, R. L. Ramachandran, J. Smart, and J. Brosius. 1987. Proc. Natl. Acad. Sci. USA. 84:8805-8809). The alignment extends over the complete length of the two proteins, except for a COOH-terminal extension of the rat HC and a few small gaps, primarily in the globular terminal domain. The yeast HC has four prolines in the region of the rat polypeptide that was proposed to form the binding site for clathrin light chains via an alpha-helical coiled-coil interaction. The yeast protein also lacks the COOH-terminal Pro-Gly rich segment present in the last 45 residues of the rat HC, which were proposed to be involved in the noncovalent association of HCs to form trimers at the triskelion vertex. To examine the importance of the COOH terminus of the HC for clathrin function, a HC containing a COOH-terminal deletion of 57 amino acids (HC delta 57) was expressed in clathrin-deficient yeast (chc1-delta). HC delta 57 rescued some of the phenotypes (slow growth at 30 degrees, genetic instability, and defects in mating and sporulation) associated with the chc1-delta mutation to normal or near normal. Also, truncated HCs were assembled into triskelions. However, cells with HC delta 57 were temperature sensitive for growth and still displayed a major defect in processing of the mating pheromone alpha-factor. Fewer coated vesicles could be isolated from cells with HC delta 57 than cells with the wild-type HC. This suggests that the COOH-terminal region is not required for formation of trimers, but it may be important for normal clathrin-coated vesicle structure and function. 相似文献
10.
11.
Glutamine synthetase from Escherichia coli is composed of 12 identical subunits and exists in various forms: unadenylylated, adenylylated, divalent cation bound (taut), and divalent cation free (relaxed). The relaxed dodecamer readily dissociates into monomers upon exposure to 1 M urea or pH 8.0. Glutamine synthetase can be inactivated irreversibly by oxidizing a particular histidine residue or by incubating with methionine sulfoximine and ATP. In order to establish hybridoma monoclones that produce antibodies capable of differentiating between different conformers of glutamine synthetase, homogeneous antibodies produced from 7 clones (10-76-1, 48-76-1, 68-2-1, 57-142-2, 72-104-1, 68-3-2, 57-8-1) were characterized for their binding specificity and effects on glutamine synthetase activity. Two antibodies (10-76-1, 48-76-1) bind only to the monomeric form, two antibodies (57-142-2, 68-3-2) bind only to the dodecameric forms (taut or relaxed) and the three others (68-2-1, 72-104-1, 57-8-1) bind to both forms. At a low antibody concentration, 68-3-2 binds preferentially to taut glutamine synthetase over oxidized glutamine synthetase. None of the 7 antibodies differentiates between unadenylylated and adenylylated form. Nevertheless, the gamma-glutamyltransferase activities of the resulting antibody-glutamine synthetase complexes were influenced variably depending upon the state of adenylylation and the divalent cation. 相似文献
12.
The interaction of caldesmon with the COOH terminus of actin 总被引:1,自引:0,他引:1
R Crosbie S Adams J M Chalovich E Reisler 《The Journal of biological chemistry》1991,266(30):20001-20006
Caldesmon interacts with the NH2-terminal region of actin. It is now shown in airfuge centrifugation experiments that modification of the penultimate cysteine residue of actin significantly weakens its binding to caldesmon both in the presence and absence of tropomyosin. Furthermore, as revealed by fluorescence measurements, caldesmon increases the exposure of the COOH-terminal region of actin to the solvent. This effect of caldesmon, like its inhibitory effect on actomyosin ATPase activity, is enhanced in the presence of tropomyosin. Proteolytic removal of the last three COOH-terminal residues of actin, containing the modified cysteine residue, restores the normal binding between caldesmon and actin. These results establish a correlation between the binding of caldesmon to actin and the conformation of the COOH-terminal region of actin and suggest an indirect rather than direct interaction between caldesmon and this part of actin. 相似文献
13.
L M Kraus 《Journal of immunology (Baltimore, Md. : 1950)》1967,99(5):894-898
14.
The nicotinic acetylcholine receptor from Torpedo sp. occurs as a dimer, disulfide-cross-linked between delta subunits. We determined the sidedness of the COOH terminus of the acetylcholine receptor delta subunit by locating the delta-delta disulfide relative to the membrane and by identifying the Cys residue forming the disulfide. We used receptor-rich native membrane vesicles isolated from Torpedo californica electric tissue and characterized as to orientation and intactness. These vesicles had not been extracted and retained v ("43-kDa protein") as a marker of the cytoplasmic surface. Using the reduction of v as an assay of permeability, we showed that two reductants, 2-mercaptoethanesulfonate and reduced glutathione, were relatively impermeant. Both of these reductants reduced the delta-delta disulfide in sealed right-side-out vesicles equally in the presence and absence of saponin, and 2-mercaptoethanesulfonate reduced this disulfide equally in the presence and absence of Triton X-100. By contrast, surfactants enhanced the reduction of dimer in inside-out and sequestered vesicles. We conclude that the disulfide is extracellular. To identify the Cys residue forming the disulfide, we labeled the sulfhydryls both in receptor dimer and in monomer generated by mild reduction of dimer. By high performance liquid chromatography and NH2-terminal sequencing of cyanogen bromide fragments of labeled delta-delta dimer and delta monomer, we found that the penultimate residue, delta-Cys-500, uniquely formed an intersubunit disulfide and that this disulfide was uniquely reduced when receptor dimer was reduced to monomer. Therefore, the delta COOH terminus is extracellular. 相似文献
15.
Inactivation of mammalian fructose diphosphate aldolases by COOH terminus autophosphorylation 总被引:1,自引:0,他引:1
Rabbit skeletal muscle and liver fructose 1,6-diphosphate aldolases autophosphorylate in the presence of inorganic phosphate at physiological and alkaline pH. ATP as well as nonhydrolyzable ATP analogues inhibits autophosphorylation. Autophosphorylation of aldolases abolishes catalytic activity, which is restored upon treatment with alkaline phosphatase. Limited proteolysis of aldolase preferentially hydrolyzes the COOH terminus and liberates a phosphorylated peptide. Treatment of rabbit aldolases with carboxypeptidase, which liberates the COOH terminal residue Tyr 363, although modifying catalytic activity does not affect autophosphorylation. Amino acid analyses are consistent with results of autophosphorylation of the COOH terminus showing residue His 361 in muscle aldolase and Tyr 361 in liver aldolase. Phosphate lability in acid pH by phosphorylated muscle aldolase but not by phosphorylated liver aldolase corroborates the amino acid assignment. Autophosphorylation of the aldolases in the crystalline state is consistent with an intramolecular mechanism. The pH dependence of autophosphorylation being dependent on the enzyme's physical state (soluble or crystalline) is not inconsistent with crystallization stabilizing a conformer having different amino acid pka values and/or reactivities than those of the soluble state. 相似文献
16.
The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity. 总被引:1,自引:0,他引:1
Arylamine N-acetyltransferases (NATs) are a homologous family of enzymes, which acetylate arylamines, arylhydroxylamines, and arylhydrazines by acetyl transfer from acetyl-coenzyme A (Ac-CoA) and are found in many organisms. NAT was first identified as the enzyme responsible for the inactivation of the anti-tubercular drug isoniazid in humans. The three-dimensional structure of NAT from Salmonella typhimurium has been resolved and shown to have three distinct domains and an active site catalytic triad composed of "Cys(69)-His(107)-Asp(122)," which is typical of hydrolytic enzymes such as the cysteine proteases. The crystal unit cell consists of a dimer of tetramers, with the C terminus of individual monomers juxtaposed. To investigate the function of the first two domains of full-length NAT from S. typhimurium and to investigate the role of the C terminus of NAT, truncation mutants were made with either the C-terminal undecapeptide or the entire third domain (85 amino acids) missing. Unlike the full-length NAT protein (281 amino acids), the truncation mutants of NAT from S. typhimurium are toxic when overexpressed intracellularly in Escherichia coli. Full-length NAT hydrolyses Ac-CoA but only in the presence of an arylamine substrate. Both truncation mutants, however, hydrolyze Ac-CoA even in the absence of arylamine substrate, illustrating that the C-terminal undecapeptide controls hydrolysis of Ac-CoA by NAT from S. typhimurium. 相似文献
17.
The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that are necessary to guide the formation of the unusually long and highly ordered hydroxyapatite (HAP) crystallites that constitute enamel. Despite its ability to direct crystal growth, the interaction of the amelogenin protein with HAP is unknown. However, the demonstration of growth restricted to the c-axis suggests a specific protein-crystal interaction, and the charged COOH terminus is often implicated in this function. To elucidate whether the COOH terminus is important in the binding and orientation of amelogenin onto HAP, we have used solid state NMR to determine the orientation of the COOH terminus of an amelogenin splice variant, LRAP (leucine-rich amelogenin protein), which contains the charged COOH terminus of the full protein, on the HAP surface. These experiments demonstrate that the methyl 13C-labeled side chain of Ala46 is 8.0 A from the HAP surface under hydrated conditions, for the protein with and without phosphorylation. The experimental results provide direct evidence orienting the charged COOH-terminal region of the amelogenin protein on the HAP surface, optimized to exert control on developing enamel crystals. 相似文献
18.
Garry G. Sedgwick Marie Sofie Yoo Larsen Tiziana Lischetti Werner Streicher Rosa Rakownikow Jersie-Christensen Jesper V. Olsen 《MABS-AUSTIN》2016,8(4):689-697
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation during mitosis by delaying the activation of the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores. The Mad2 protein is essential for a functional checkpoint because it binds directly to Cdc20, the mitotic co-activator of the APC/C, thereby inhibiting progression into anaphase. Mad2 exists in at least 2 different conformations, open-Mad2 (O-Mad2) and closed-Mad2 (C-Mad2), with the latter representing the active form that is able to bind Cdc20. Our ability to dissect Mad2 biology in vivo is limited by the absence of monoclonal antibodies (mAbs) useful for recognizing the different conformations of Mad2. Here, we describe and extensively characterize mAbs specific for either O-Mad2 or C-Mad2, as well as a pan-Mad2 antibody, and use these to investigate the different Mad2 complexes present in mitotic cells. Our antibodies validate current Mad2 models but also suggest that O-Mad2 can associate with checkpoint complexes, most likely through dimerization with C-Mad2. Furthermore, we investigate the makeup of checkpoint complexes bound to the APC/C, which indicate the presence of both Cdc20-BubR1-Bub3 and Mad2-Cdc20-BubR1-Bub3 complexes, with Cdc20 being ubiquitinated in both. Thus, our defined mAbs provide insight into checkpoint signaling and provide useful tools for future research on Mad2 function and regulation. 相似文献
19.
In this paper we present a procedure for the isolation of the native bovine alpha chain. The method is based on affinity chromatography. The results show that the ligand-binding properties of the bovine alpha chain are almost identical to those of the human alpha chain. The hybrid alphaB2 betaH2 prepared by mixing bovine alpha chains and human beta chains shows ligand binding properties similar to those of human hemoglobin and different from those of bovine hemoglobin. 相似文献
20.
Murine monoclonal antibodies 9C3, 7B1, and 9E9 have been obtained using native human fibrinogen as the antigen. The antibodies reacted with the epitopes in the COOH-terminal domain of the A alpha chain. Fragmentation of the A alpha chain with plasmin, and, as in the case of the 9E9 epitope, with V8 protease, followed by isolation of the smallest reacting peptides, allowed the localization of the epitopes for 9C3, 7B1, and 9E9 to the amino acid sequences of alpha 240-268, alpha 425-440, and alpha 541-574, respectively. All three monoclonal antibodies strongly inhibited the rate of fibrin polymer assembly from monomers, both in the purified system and in the human plasma. The mechanism of this strong inhibition implied a rapid formation of fibrin protofibrils, followed by capping with IgG molecules of protofibrils containing approximately ten monomers. These observations demonstrated that certain regions in the COOH terminus of the alpha chain may play an important role in the assembly of a fibrin clot, presumably being involved in lateral aggregation of protofibrils. 相似文献