首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Studies of the megamouth shark, one of three planktivorous sharks, can provide information about their evolutionary history. Megamouth shark feeding has never been observed in life animals, but two alternative hypotheses on biomechanics suggest either feeding, i.e., ram feeding or suction feeding. In this study, the second moment of area of the ceratohyal cartilages, which is an indicator of the flexural stiffness of the cartilages, is calculated for 21 species of ram‐ and suction‐feeding sharks using computed tomography. The results indicate that suction‐feeding sharks have ceratohyal cartilages with a larger second moment of area than ram‐feeding sharks. The result also indicates that the ram–suction index, which is an indicator of relative contribution of ram and suction behavior, is also correlated with the second moment of area of the ceratohyal. Considering that large bending stresses are expected to be applied to the ceratohyal cartilage during suction, the larger second moment of area of the ceratohyal of suction‐feeding sharks can be interpreted as an adaptation for suction feeding. Based on the small second moment of area of the ceratohyal cartilage of the megamouth shark, the feeding mode of the megamouth shark is considered to be ram feeding, similar to the planktivorous basking shark. From these results, an evolutionary scenario of feeding mechanics of three species of planktivorous sharks can be suggested. In this scenario, the planktivorous whale shark evolved ram feeding from a benthic suction‐feeding ancestor. Ram feeding in the planktivorous megamouth shark and the basking shark evolved from ram feeding swimming‐type ancestors and that both developed their unique filtering system to capture small‐sized prey. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
This is the first known report on the skeletal and muscular systems, and the skin histology, of the pectoral fin of the rare planktivorous megamouth shark Megachasma pelagios. The pectoral fin is characterized by three features: 1) a large number of segments in the radial cartilages; 2) highly elastic pectoral fin skin; and 3) a vertically-rotated hinge joint at the pectoral fin base. These features suggest that the pectoral fin of the megamouth shark is remarkably flexible and mobile, and that this flexibility and mobility enhance dynamic lift control, thus allowing for stable swimming at slow speeds. The flexibility and mobility of the megamouth shark pectoral fin contrasts with that of fast-swimming sharks, such as Isurus oxyrhinchus and Lamna ditropis, in which the pectoral fin is stiff and relatively immobile.  相似文献   

3.
4.
The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1-2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ~2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic.  相似文献   

5.
The sandbar shark, Carcharhinus plumbeus, is a wide-ranging coastal species in tropical and temperate regions, and it is the most common species of shark in Hawaii, as in many locations where it occurs. Information on the diet and feeding habits of this species in the Pacific Ocean are extremely limited. For this study we quantified the diet of sandbar sharks in Hawaii based on records collected during the Hawaii Cooperative Shark Research and Control Program from 1967 to 1969. During this program a total of 565 stomachs were examined, of which 265 contained food. Sharks ranged in size from 59 to 190 cm total length. Teleosts were the most common prey group, but both cephalopods and crustaceans also occurred frequently. Ontogenetic changes in diet of sandbar sharks were apparent, with crustaceans forming a greater proportion of the diet of smaller sharks. Both cephalopods and elasmobranchs increased in importance with increasing shark size. Prey diversity also increased with size, with large, mobile, and reef prey species found more commonly in the diet of larger sharks. Mature male and female sharks appeared to segregate by depth, though major differences in the diet between the sexes were not apparent. However, there was some evidence of dietary differences between sharks caught in different depths and seasons. The results of this study suggest that sandbar sharks in Hawaii and throughout the world, are primarily piscivores, but also consume a variety of invertebrate prey, and that their diet varies with geographical location and stage of development.  相似文献   

6.
东太平洋中部中上层鲨鱼群落营养生态位分化   总被引:1,自引:0,他引:1  
鲨鱼在大洋生态系统中占据着重要的生态地位,其作为顶级捕食者,通过下行效应直接影响生态系统的稳定.稳定同位素技术是目前研究摄食生态学强有力的手段之一,可利用碳氮稳定同位素在食物网中的特性分别指示鲨鱼的食物来源和营养级.本研究选取8种130尾采集自东太平洋中部的中上层鲨鱼,应用稳定同位素绘制其种群生态位图谱,比较不同种群间的生态地位及资源分配方式上的差异.结果表明:不同鲨鱼种群碳、氮稳定同位素比值存在显著差异;8种鲨鱼在东太平洋生态系统中的营养级为4.3~5.4,大青鲨、尖吻鲭鲨与其他6种鲨鱼存在摄食隔离,表现出独特的营养生态地位.这些结果充分证明大洋性中上层鲨鱼并非生态系统的冗余种,其营养生态位的独特性不会被其他捕食者简单地替代和弥补.  相似文献   

7.
The Grey Nurse Shark (Carcharias taurus) is a popular attraction for shark eco-tourism using SCUBA. The species is also ‘globally Vulnerable’ (IUCN 2008. List of Threatened Species. www.iucnredlist.org/). Magic Point (off Maroubra) in Sydney is favoured by recreational SCUBA divers wishing to observe these sharks. The objective of this study was to experimentally test the level of the activities of recreational SCUBA divers on shark behaviour. This study assessed the shark responses to diver group size (4, 8 and 12), time of day (am, noon and pm) and diver distance from the sharks (3?m and 6?m). The study found that diver activity does affect the aggregation, swimming and respiratory behaviour of sharks at this site, albeit at short-term levels. Diver group size had no significant effect on shark aggregation, but the proximity of divers to the sharks was crucial. Shark distribution in the cave changed significantly in the presence of divers at 3?m distance from the cave, but stayed unchanged at 6?m. This was particularly apparent in the presence of large groups of 12 divers at 3?m distance when sharks increased their swim speed and ventilation mechanism from ‘active’ to ‘RAM’ ventilation. Such change coincided with a sudden decrease in ventilation frequency. Our research suggests that these effects are short-term and that sharks resume their behaviour once the divers retreat. If divers abide by the current code of practice for diving at this site, it is unlikely that their activities will substantially impact Grey Nurse Sharks in the long term.  相似文献   

8.
The blue shark (Prionace glauca) and the shortfin mako shark (Isurus oxyrinchus) are two large and highly migratory sharks distributed in most oceans. Although they are often caught in the south Pacific Ocean long-line fisheries, their trophic ecology is poorly understood. Stable isotopes with Bayesian mixing and dependence concentration models were performed to determine the diet and trophic differences between the two species in the South-eastern Pacific Ocean. According to the mixing models, fishes are the most important prey of these sharks. Dolphin calves and remains were found in the stomachs of both species, which represents a novel finding in trophic ecology of South Pacific sharks. Intra-specific differences were found in P. glauca, but not in specimens of I. oxyrinchus. The two sharks showed a high degree of diet overlap (73%), primarily over mackerel and dolphin carcasses. Our results indicate that blue and shortfin mako sharks have a generalist feeding strategy in the eastern Pacific Ocean, with a strong preference for teleost fishes and also for dolphin carcasses. Therefore, trophic studies are useful to understand energy flow through the food web, and the trophic position of key species.  相似文献   

9.
Vertebrates differ in their regulation of gastric acid secretion during periods of fasting, yet it is unknown why these differences occur. Elasmobranch fishes are the earliest known vertebrates to develop an acid secreting stomach and as such may make a good comparative model for determining the causative factors behind these differences. We measured gastric pH and temperature continuously during periods of fasting in captive free-swimming nurse sharks (Ginglymostoma cirratum) using autonomous pH/temperature data-loggers. All nurse sharks secreted strong gastric acids (minimum pH 0.4) after feeding; however, for most of the sharks, pH increased to 8.2-8.7, 2-3 days after feeding. Half of the sharks also exhibited periodic oscillations in pH when the stomach was empty that ranged from 1.1 to 8.7 (acid secretion ceased for 11.3 +/- 4.3 h day(-1)). This is in contrast to the gastric pH changes observed from leopard sharks (Triakis semifasciata) in a previous study, where the stomach remains acidic during fasting. The leopard shark is a relatively active, more frequently feeding predator, and continuous acid secretion may increase digestive efficiency. In contrast, the nurse shark is less active and is thought to feed less frequently. Periodic cessation of acid secretion may be an energy conserving mechanism used by animals that feed infrequently and experience extended periods of fasting.  相似文献   

10.
The majority of studies on the evolution and function of feeding in sharks have focused primarily on the movement of cranial components and muscle function, with little integration of tooth properties or function. As teeth are subjected to sometimes extreme loads during feeding, they undergo stress, strain, and potential failure. As attributes related to structural strength such as material properties and overall shape may be subjected to natural selection, both prey processing ability and structural parameters must be considered to understand the evolution of shark teeth. In this study, finite element analysis was used to visualize stress distributions of fossil and extant shark teeth during puncture, unidirectional draw (cutting), and holding. Under the loading and boundary conditions here, which are consistent with bite forces of large sharks, shark teeth are structurally strong. Teeth loaded in puncture have localized stress concentrations at the cusp apex that diminish rapidly away from the apex. When loaded in draw and holding, the majority of the teeth show stress concentrations consistent with well designed cantilever beams. Notches result in stress concentration during draw and may serve as a weak point; however they are functionally important for cutting prey during lateral head shaking behavior. As shark teeth are replaced regularly, it is proposed that the frequency of tooth replacement in sharks is driven by tooth wear, not tooth failure. As the tooth tip and cutting edges are worn, the surface areas of these features increase, decreasing the amount of stress produced by the tooth. While this wear will not affect the general structural strength of the tooth, tooth replacement may also serve to keep ahead of damage caused by fatigue that may lead to eventual tooth failure. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Whale shark (Rhincodon typus, Smith, 1828) is an endangered species with anthropogenic pressures due to increasing demand of encounter tourism activities. Research efforts to identify management and conservation strategies for this species are needed. The Northern Mexican Caribbean is one of the most important feeding aggregation sites of whale sharks worldwide. In this study, Mexican Caribbean whale shark feeding habits are assessed by means of fatty acid (FA) signature analysis, a biochemical non-destructive technique widely applied in trophic ecology studies. Sub-dermal tissue biopsies of 68 whale sharks and samples of their potential prey (zooplankton) were collected during 2010 and 2011 in two areas with high R. typus abundance. Zooplankton samples (n?=?17) were divided in two categories: mixed zooplankton (several groups of zooplankton) and fish eggs (> 95% of sample components were fish eggs). FA profiles of whale shark tissue sampled between years showed significant variability; while there was no intraspecific differences in FA signature related to sex, size and location. FA profiles of whale sharks and their potential prey were dominated by saturated fatty acids (SFA). R. typus FA signature was significantly different from that of mixed zooplankton; on the other hand, whale shark and fish egg FA profiles formed groups with overlapping values and registered high levels of oleic acid. PUFA average ω3/ ω6 ratio on whale shark FA profiles for both years was below 1. Arachidonic acid (ARA) percentage was higher in whale shark biopsies (13.2% in 2010, 6.8% in 2011) compared to values observed in fish eggs (2.0%) and mixed zooplankton (1.4%). Similarity between FA profiles of whale sharks and fish eggs, low levels of bacterial FA found in R. typus biopsies, as well as whale shark feeding behavior observations in the study area, suggest that R. typus is feeding mainly on surface zooplankton in Mexican Caribbean; however, elevated ARA percentages in whale shark samples may indicate that this species has complementary feeding sources, such as demersal zooplankton, which has been reported in other aggregation sites. Results obtained contribute to the knowledge of the whale shark trophic ecology in the area, but are inconclusive. Further studies are recommended to evaluate whale shark FA profiles from different tissues (muscle or blood); also, broader information is needed about zooplankton FA signature in the study area.  相似文献   

12.
How are tiger shark embryos nourished to large size without a placental connection? Tiger sharks belong to the family Carcharhinidae, and all carcharhinid sharks are placental with the exception of the tiger shark. The aim of this study was to test the hypothesis that tiger shark embryos are nourished to large size by imbibing a clear uterine fluid found in their egg cases. Based on weights of fertilized eggs and of term embryos, the tiger shark is a matrotrophic species, and its embryos appear to reach gains of 2119% in wet weight and 1092% in dry weight during gestation. By measuring the total energy content of the fluid in the egg case by chemical oxygen demand (COD), the authors demonstrate that clear liquid in the tiger shark egg case is an energy-rich embryotrophe that nourishes the embryos to large size. We suggest that the process be termed ‘embryotrophy'. The process appears to be an adaptation for producing large broods of large embryos in a species lacking a placental connection.  相似文献   

13.
This study documented the parasite faunas of the spiral valves of blue sharks Prionace glauca (L. 1758) and common thresher sharks Alopias vulpinus (Bonnaterre, 1788) caught in the California Current Large Marine Ecosystem (CCLME) north of the Mexican border. The spiral valves of 18 blue and 19 thresher sharks caught in the CCLME from 2009 to 2013 were examined for parasites. Seven parasite taxa were found in blue sharks and nine in threshers. The tetraphyllidean cestode Anthobothrium sp. (78% prevalence) was the most common parasite in blue sharks, and the phyllobothriid cestode Paraorygmatobothrium sp. (90% prevalence) was the most common in threshers. An adult nematode of the genus Piscicapillaria was found in threshers for the first time and may be a new species. Adult individuals of Hysterothylacium sp. were found in both shark species. The adult acanthocephalan Rhadinorhynchus cololabis and remains of the parasitic copepod Pennella sp. – both parasites of Pacific saury, Cololabis saira – were found in the intestines of threshers, indicating recent feeding on saury. This study paves the way for a more comprehensive examination, including more samples and a wider variety of shark species, to provide a greater understanding of shark feeding behaviour and possibly provide information on shark population biology.  相似文献   

14.
Synopsis Stomach content data from 281 tiger sharks caught during shark control programs in Hawaii between 1967 and 1969, and during 1976 were analyzed to examine feeding habits and ontogenetic shifts in diet. As sharks increased in size, prey diversity and frequency of occurrence of large prey items increased. The percent occurrence of teleosts and cephalopods in stomachs decreased as sharks increased in length, while occurrence of elasmobranchs, turtles, land mammals, crustaceans, and undigestible items increased. Comparisons between the diets of tiger sharks from Hawaii and other locations indicate that ontogenetic shifts are universal in this species and that tiger sharks may be opportunistic feeders that prey heavily on abundant, easy to capture prey. Small tiger sharks may be spatially segregated from medium and large sharks and appear to be primarily nocturnal, bottom feeders. Large tiger sharks feed near the bottom at night, but also feed at the surface during the day. Prey, similar in size to humans, begin to occur in the diet of tiger sharks approximately 230 cm TL, and therefore sharks of this size and larger may pose the greatest threat to humans. Ontogenetic shifts in diet may be attributed to increased size of sharks, expanded range and exploitation of habitats of larger sharks, and/or improved hunting skill of larger sharks.Deceased 1974  相似文献   

15.
16.
Obtaining accurate species-specific landings data is an essential step toward achieving sustainable shark fisheries. Globally distributed sharpnose sharks (genus Rhizoprionodon) exhibit life-history characteristics (rapid growth, early maturity, annual reproduction) that suggests that they could be fished in a sustainable manner assuming an investment in monitoring, assessment and careful management. However, obtaining species-specific landings data for sharpnose sharks is problematic because they are morphologically very similar to one another. Moreover, sharpnose sharks may also be confused with other small sharks (either small species or juveniles of large species) once they are processed (i.e., the head and fins are removed). Here we present a highly streamlined molecular genetics approach based on seven species-specific PCR primers in a multiplex format that can simultaneously discriminate body parts from the seven described sharpnose shark species commonly occurring in coastal fisheries worldwide. The species-specific primers are based on nucleotide sequence differences among species in the nuclear ribosomal internal transcribed spacer 2 locus (ITS2). This approach also distinguishes sharpnose sharks from a wide range of other sharks (52 species) and can therefore assist in the regulation of coastal shark fisheries around the world.  相似文献   

17.
Underwater ultrasound, a new tool for observing the internal body parts of aquatic animals by scuba divers, allowed us long‐term and frequent observations of the embryos of captive aquatic vertebrates. New ultrasound data of captive tawny nurse sharks (Nebrius ferrugineus) revealed that their embryos frequently migrate between the right and left uteri during gestation. This report is the first reliable evidence of active embryonic locomotion in live‐bearing vertebrates and is contradictory to the concept of “sedentary embryo” which has mainly arisen from studies of mammals. The tawny nurse shark is unique among orectolobiform sharks, in which the embryo develops by feeding on sibling eggs in utero. Thus, we hypothesized that swimming aids in an efficient search and capture of these eggs in the uterine environment.  相似文献   

18.
In this study we present the first attempt at modelling the feeding behaviour of whale sharks using a machine learning analytical method. A total of eight sharks were monitored with tri-axial accelerometers and their foraging behaviours were visually observed. Our results highlight that the random forest model is a valid and robust approach to predict the feeding behaviour of the whale shark. In conclusion this novel approach exposes the practicality of this method to serve as a conservation tool and the capability it offers in monitoring potential disturbances of the species.  相似文献   

19.
The goal of this study was to examine the feeding kinematics of the horn shark, Heterodontus francisci, a member of the most basal clade of galeomorph sharks, the Heterodontiformes. The accessibility of the food was manipulated to determine if the horn shark modulated capture. Three different methods of presenting food were used to mimic the different positions of prey items found in the natural diet of the horn shark. Food was presented unattached to the substrate, securely attached, or fitted snugly in a tube. Using high-speed video kinematic analysis, capture events were examined. Heterodontus francisci uses inertial suction facilitated by rapid mandible depression and labial cartilage protrusion to capture food. The horn shark conforms to a capture kinematic profile characteristic of both basal and derived inertial suction feeding sharks. Unusual post-capture behaviors include body leveraging, use of the mouth to form a seal over food, and chisel-like palatoquadrate protrusion. When presented with food of different accessibility, Heterodontus francisci used one consistent kinematic pattern for capture that was not modulated. Only post-capture behaviors varied according to food accessibility.  相似文献   

20.
Great white sharks are protected by national legislation in several countries, making this species the most widely protected elasmobranch in the world. Although the market demand for shark fins in general has continued to grow, the value and extent of utilization of white shark fins in trade has been controversial. We combine law enforcement with genetic profiling to demonstrate that illegal trade in fins of this species is occurring in the contemporary international market. Furthermore, we document the presence of fins from very young white sharks in the trade, suggesting a multiple-use market (food to trophies) exists for fins of this species. The presence of small fins in the trade contradicts the view that white shark fins have market value only as large display trophies, and not as food. Our findings indicate that effective conservation of protected shark species will require international management regimes that include monitoring of the shark fishery and trade on a species-specific basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号