首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Kinase suppressor of Ras (KSR) is a molecular scaffold that interacts with the components of the Raf/MEK/ERK kinase cascade and positively regulates ERK signaling. Phosphorylation of KSR1, particularly at Ser(392), is a critical regulator of KSR1 subcellular localization and ERK activation. We examined the role of phosphorylation of both Ser(392) and Thr(274) in regulating ERK activation and cell proliferation. We hypothesized that KSR1 phosphorylation is involved in generating signaling specificity through the Raf/MEK/ERK kinase cascade in response to stimulation by different growth factors. In fibroblasts, platelet-derived growth factor stimulation induces sustained ERK activation and promotes S-phase entry. Treatment with epidermal growth factor induces transient ERK activation but fails to drive cells into S phase. Mutation of Ser(392) and Thr(274) (KSR1.TVSA) promotes sustained ERK activation and cell cycle progression with either platelet-derived growth factor or epidermal growth factor treatment. KSR1(-/-) mouse embryo fibroblasts expressing KSR1.TVSA proliferate two times faster and grow to a higher density than cells expressing the same level of wild-type KSR1. In addition, KSR1.TVSA is more stable than wild-type KSR1. These data demonstrate that phosphorylation and stability of the molecular scaffold KSR1 are critical regulators of growth factor-specific responses that promote cell proliferation.  相似文献   

2.
Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, and ERK and provides spatial and temporal regulation of Ras-dependent ERK cascade signaling. In this report, we identify the heterotetrameric protein kinase, casein kinase 2 (CK2), as a new KSR1-binding partner. Moreover, we find that the KSR1/CK2 interaction is required for KSR1 to maximally facilitate ERK cascade signaling and contributes to the regulation of Raf kinase activity. Binding of the CK2 holoenzyme is constitutive and requires the basic surface region of the KSR1 atypical C1 domain. Loss of CK2 binding does not alter the membrane translocation of KSR1 or its interaction with ERK cascade components; however, disruption of the KSR1/CK2 interaction or inhibition of CK2 activity significantly reduces the growth-factor-induced phosphorylation of C-Raf and B-Raf on the activating serine site in the negative-charge regulatory region (N-region). This decrease in Raf N-region phosphorylation further correlates with impaired Raf, MEK, and ERK activation. These findings identify CK2 as a novel component of the KSR1 scaffolding complex that facilitates ERK cascade signaling by functioning as a Raf family N-Region kinase.  相似文献   

3.
Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, ERK to provide spatial and temporal regulation of Ras-dependent ERK cascade signaling. Interruption of this mechanism can have a high influence in inhibiting the downstream signaling of the mutated tyrosine kinase receptor kinase upon ligand binding. Still none of the studies targeted to prevent the binding of Raf, MEK binding on kinase suppressor of RAS. In that perspective the cysteine rich C1 domain of scaffold proteins kinase suppressor of Ras-1 was targeted rather than its ATP binding site with small ligand molecules like flavones and anthocyanidins and analyzed through insilico docking studies. The binding energy evaluation shows the importance of hydroxyl groups at various positions on the flavone and anthocyanidin nucleus. Over all binding interaction shows these ligands occupied the potential sites of cysteine rich C1 domain of scaffold protein KSR.  相似文献   

4.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1−/− colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.  相似文献   

5.
Mitogen-activated protein kinase pathways are implicated in the regulation of cell differentiation, although their precise roles in many differentiation programs remain elusive. The Raf/MEK/extracellular signal-regulated kinase (ERK) kinase cascade has been proposed to both promote and inhibit adipogenesis. Here, we titrate expression of the molecular scaffold kinase suppressor of Ras 1 (KSR1) to regulate signaling through the Raf/MEK/ERK/p90 ribosomal S6 kinase (RSK) kinase cascade and show how it determines adipogenic potential. Deletion of KSR1 prevents adipogenesis in vitro, which can be rescued by introduction of low levels of KSR1. Appropriate levels of KSR1 coordinate ERK and RSK activation with C/EBPbeta synthesis leading to the phosphorylation and stabilization of C/EBPbeta at the precise moment it is required within the adipogenic program. Elevated levels of KSR1 expression, previously shown to enhance cell proliferation, promote high, sustained ERK activation that phosphorylates and inhibits peroxisome proliferator-activated receptor gamma, inhibiting adipogenesis. Titration of KSR1 expression reveals how a molecular scaffold can modulate the intensity and duration of signaling emanating from a single pathway to dictate cell fate.  相似文献   

6.
The kinase suppressor of Ras (KSR) is a loss-of-function allele that suppresses the rough eye phenotype of activated Ras in Drosophila and the multivulval phenotype of activated Ras in Caenorhabditis elegans. The physiological role of mammalian KSR is not known. We examined the mechanisms regulating the phosphorylation of this putative kinase in mammalian cells. Wild-type mouse KSR and a mutated KSR protein predicted to create a kinase-dead protein are phosphorylated identically in intact cells and in the immune complex. Phosphopeptide sequencing identified 10 in vivo phosphorylation sites in KSR, all of which reside in the 539 noncatalytic amino terminal amino acids. Expression of the amino terminal portion of KSR alone demonstrated that it was phosphorylated in the intact cell and in an immune complex in a manner indistinguishable from that of intact KSR. These data demonstrate that the kinase domain of KSR is irrelevant to its phosphorylation state and suggest that the phosphorylation of KSR and its association with a distinct set of kinases may affect intracellular signaling.  相似文献   

7.
Sex steroids exert anti-apoptotic effects on osteoblasts/osteocytes but exert pro-apoptotic effects on osteoclasts, in both cases requiring activation of the extracellular signal-regulated kinases (ERKs). To explain the mechanistic basis of this divergence, we searched for differences in the kinetics of phosphorylation and/or in the subcellular localization of ERKs in response to 17beta-estradiol in the two cell types. In contrast to its transient effect on ERK phosphorylation in osteocytic cells (return to base line by 30 min), 17beta-estradiol-induced ERK phosphorylation in osteoclasts was sustained for at least 24 h following exposure to the hormone. Conversion of sustained ERK phosphorylation to transient, by means of cholera toxin-induced activation of the adenylate cyclase/cAMP/protein kinase A pathway, abrogated the pro-apoptotic effect of 17beta-estradiol on osteoclasts. Conversely, prolongation of ERK activation in osteocytes, by means of leptomycin B-induced inhibition of ERK export from the nucleus or overexpression of a green fluorescent protein-ERK2 mutant that resides permanently in the nucleus, converted the anti-apoptotic effect of 17beta-estradiol to a pro-apoptotic one. These findings indicate that the kinetics of ERK phosphorylation and the length of time that phospho-ERKs are retained in the nucleus are responsible for pro-versus anti-apoptotic effects of estrogen on different cell types of bone and perhaps their many other target tissues.  相似文献   

8.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytoplasmic localization of MKP-3 is mediated by a chromosome region maintenance-1 (CRM1)-dependent nuclear export pathway. Furthermore, the nuclear translocation of MKP-3 seen in the presence of leptomycin B is mediated by an active process, indicating that MKP-3 shuttles between the nucleus and cytoplasm. The amino-terminal noncatalytic domain of MKP-3 is both necessary and sufficient for nuclear export of the phosphatase and contains a single functional leucine-rich nuclear export signal (NES). Even though this domain of the protein also mediates the binding of MKP-3 to MAP kinase, we show that mutations of the kinase interaction motif which abrogate ERK2 binding do not affect MKP-3 localization. Conversely, mutation of the NES does not affect either the binding or phosphatase activity of MKP-3 toward ERK2, indicating that the kinase interaction motif and NES function independently. Finally, we demonstrate that the ability of MKP-3 to cause the cytoplasmic retention of ERK2 requires both a functional kinase interaction motif and NES. We conclude that in addition to its established function in the regulated dephosphorylation and inactivation of MAP kinase, MKP-3 may also play a role in determining the subcellular localization of its substrate. Our results reinforce the idea that regulatory proteins such as MKP-3 may play a key role in the spatio-temporal regulation of MAP kinase activity.  相似文献   

9.
10.
The production of phosphatidic acid plays a crucial role in the activation of the ERK cascade. This role was linked to the binding of phosphatidate to a specific polybasic site within the kinase domain of Raf-1. Here we show that phosphatidate promotes ERK phosphorylation in intact cells but does not activate Raf in vitro. The kinase suppressor of Ras (KSR) contains a sequence homologous to the phosphatidate binding site of Raf-1. Direct binding of phosphatidate to synthetic peptides derived from the sequences of the binding domains of Raf-1 and KSR was demonstrated by spectroscopic techniques. The specificity of these interactions was confirmed using synthetic lipids and mutated peptides in which the core of the phosphatidic acid binding domain was disrupted. Insulin and exogenous dioleoyl phosphatidate induced a rapid translocation of a mouse KSR1-EGFP construct to the plasma membrane of HIRcB cells. Mutation of two arginines located in the core of the putative phosphatidate binding site abolished dioleoyl phosphatidate- and insulin-induced translocation of KSR1. Overexpression of the mutant KSR1 in HIRcB cells inhibited insulin-dependent MEK and ERK phosphorylation. The addition of dioleoyl phosphatidate or insulin increased the co-localization of KSR1 and H-Ras and promoted the formation of plasma membrane patches enriched in both proteins and phosphatidic acid. These results, in conjunction with our previous work, suggest the formation of phosphatidate-enriched membrane microdomains that contain all components of the ERK cascade. We propose that these domains act as molecular scaffolds in the coupling of signaling events.  相似文献   

11.
In response to epidermal growth factor (EGF), the mitogen-activated protein kinase ERK2 translocates into the nucleus. To probe the mechanisms regulating the subcellular localization of ERK2, we used live cell imaging to examine the interaction between MEK1 and ERK2. Fluorescence resonance energy transfer (FRET) studies show that MEK1 and ERK2 directly interact and demonstrate that this interaction in the cytoplasm is largely responsible for cytoplasmic retention of ERK2. Stimulation with EGF caused loss of FRET as ERK separated from MEK and moved into the nucleus. FRET was recovered as ERK returned to the cytosol, indicating ERK reassociation with MEK in the cytoplasm. The EGF-induced transit of ERK through the nucleus was complete within 20 min, and there was no significant movement of MEK into the nucleus. Fluorescence recovery after photobleaching experiments was used to assess the rate of movement of MEK and ERK. The steady-state rate of ERK entry into the nucleus in resting cells was energy-independent and greater than the rate of ERK entry upon EGF stimulation. This suggests that the rate constant for ERK transport across the nuclear membrane is not limiting nuclear entry. Thus, we suggest that the movement of ERK into and out of the nucleus in response to agonist occurs primarily by diffusion and is controlled by interactions with binding partners in the cytosol and nucleus. No evidence of ERK dimerization was detected by FRET methods; the kinetics for nucleocytoplasmic transport were unaffected by mutations in the ERK putative dimerization domain.  相似文献   

12.
The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates the activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) signal transduction pathway. KSR1 disruption in mouse embryo fibroblasts (MEFs) abrogates growth factor-induced ERK activation, H-RasV12-induced replicative senescence, and H-RasV12-induced transformation. Caveolin-1 has been primarily described as a major component of the coating structure of caveolae, which can serve as a lipid binding adaptor protein and coordinates the assembly of Ras, Raf, MEK, and ERK. In this study, we show that KSR1 interacts with caveolin-1 and is responsible for MEK and ERK redistribution to caveolin-1-rich fractions. The interaction between KSR1 and caveolin-1 is essential for optimal activation of ERK as a KSR1 mutant unable to interact with caveolin-1 does not efficiently mediate growth factor-induced ERK activation at the early stages of pathway activation. Furthermore, abolishing the KSR1–caveolin-1 interaction increases growth factor demands to promote H-RasV12-induced proliferation and has adverse effects on H-RasV12-induced cellular senescence and transformation. These data show that caveolin-1 is necessary for optimal KSR1-dependent ERK activation by growth factors and oncogenic Ras.  相似文献   

13.
LIM kinases (LIMKs) regulate actin dynamics through cofilin phosphorylation and also have a function in the nucleus. Recently we have shown that LIMK2 shuttles between cytoplasm and nucleus in endothelial cells and that nuclear import is inhibited by protein kinase C-mediated phosphorylation of Ser-283. Here we aimed to identify the structural features of LIMK2 responsible for nuclear import. We found that the kinase domain of LIMK2 is localized exclusively in the nucleus and, in contrast to the kinase domain of LIMK1, it accumulated in the nucleolus. Through site-directed mutagenesis, we identified the basic amino acid-rich motif KKRTLRKNDRKKR (amino acids 491-503) as the functional nuclear and nucleolar localization signal of LIMK2. After fusing this motif to enhanced green fluorescent protein, the fusion protein localized exclusively in the nucleus and nucleolus. Mutagenesis studies showed that phosphorylation of Thr-494, a putative protein kinase C phosphorylation site identified within the nuclear localization signal, inhibits nuclear import of the enhanced green fluorescent protein-PDZ kinase domain of LIMK2. After inhibiting nuclear export with leptomycin B, phosphorylation of either Ser-283 or Thr-494 reduced the nuclear import of LIMK2. Phosphorylation of both Ser-283 and Thr-494 sites inhibited nuclear import completely. Our findings identify a unique basic amino acid-rich motif (amino acids 491-503) in LIMK2 which is not present in LIMK1 that serves to target the protein not only to the nucleus but also to the nucleolus. Phosphorylation of Thr-494 within this motif negatively regulates nuclear import of LIMK2.  相似文献   

14.
Integrin-mediated adhesion to the extracellular matrix permits efficient growth factor-mediated activation of extracellular signal-regulated kinases (ERKs). Points of regulation have been localized to the level of receptor phosphorylation or to activation of the downstream components, Raf and MEK (mitogen-activated protein kinase/ERK kinase). However, it is also well established that ERK translocation from the cytoplasm to the nucleus is required for G1 phase cell cycle progression. Here we show that phosphorylation of the nuclear ERK substrate, Elk-1 at serine 383, is anchorage dependent in response to growth factor treatment of NIH 3T3 fibroblasts. Furthermore, when we activated ERK in nonadherent cells by expression of active components of the ERK cascade, subsequent phosphorylation of Elk-1 at serine 383 and Elk-1-mediated transactivation were still impaired compared with adherent cells. Elk-1 phosphorylation was dependent on an intact actin cytoskeleton, as discerned by treatment with cytochalasin D (CCD). Finally, expression of active MEK failed to predominantly localize ERK to the nucleus in suspended cells or adherent cells treated with CCD. These data show that integrin-mediated organization of the actin cytoskeleton regulates localization of activated ERK, and in turn the ability of ERK to efficiently phosphorylate nuclear substrates.  相似文献   

15.
Genetic and biochemical studies have identified kinase suppressor of Ras (KSR) to be a conserved component of Ras-dependent signaling pathways. To better understand the role of KSR in signal transduction, we have initiated studies investigating the effect of phosphorylation and protein interactions on KSR function. Here, we report the identification of five in vivo phosphorylation sites of KSR. In serum-starved cells, KSR contains two constitutive sites of phosphorylation (Ser297 and Ser392), which mediate the binding of KSR to the 14-3-3 family of proteins. In the presence of activated Ras, KSR contains three additional sites of phosphorylation (Thr260, Thr274, and Ser443), all of which match the consensus motif (Px[S/T]P) for phosphorylation by mitogen-activated protein kinase (MAPK). Further, we find that treatment of cells with the MEK inhibitor PD98059 blocks phosphorylation of the Ras-inducible sites and that activated MAPK associates with KSR in a Ras-dependent manner. Together, these findings indicate that KSR is an in vivo substrate of MAPK. Mutation of the identified phosphorylation sites did not alter the ability of KSR to facilitate Ras signaling in Xenopus oocytes, suggesting that phosphorylation at these sites may serve other functional roles, such as regulating catalytic activity. Interestingly, during the course of this study, we found that the biological effect of KSR varied dramatically with the level of KSR protein expressed. In Xenopus oocytes, KSR functioned as a positive regulator of Ras signaling when expressed at low levels, whereas at high levels of expression, KSR blocked Ras-dependent signal transduction. Likewise, overexpression of Drosophila KSR blocked R7 photoreceptor formation in the Drosophila eye. Therefore, the biological function of KSR as a positive effector of Ras-dependent signaling appears to be dependent on maintaining KSR protein expression at low or near-physiological levels.  相似文献   

16.
The mitogen-activated protein kinase (MAPK) cascade consists of the MAPK (extracellular signal-regulated kinase 2; ERK2) and its activator, MAPK kinase (MAP/ERK kinase; MEK). However, the mechanisms for activation of ERK2 have not been defined yet in cells. Here, we used fluorescent protein-tagged ERK2 and MEK to examine the localization of ERK2 and MEK in living rat basophilic leukemia (RBL-2H3) cells. ERK2 was mainly in the cytoplasm in resting cells but translocated into the nucleus after the ligation of IgE receptors. The import of ERK2 reached the maximum at 6--7 min, and then the imported ERK2 was exported from the nucleus. MEK mainly resided in the cytoplasm, and no significant MEK translocation was detected statically after ligation of IgE receptors. However, analysis of the dynamics of ERK2 and MEK suggested that both of them rapidly shuttle between the cytoplasm and the nucleus and that MEK regulates the nuclear shuttling of ERK2, whereas MEK remains mainly in the cytoplasm. In addition, the data suggested that the sustained calcium increase was required for the optimal translocation of ERK2 into the nucleus in RBL-2H3 cells. These results gave a new insight of the dynamics of ERK2 and MEK in the nuclear shuttling of RBL-2H3 cells after the ligation of IgE receptors.  相似文献   

17.
MEK1 and MEK2 are related protein kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, cell migration, differentiation, metabolism, and proliferation. Moreover, oncogenic mutations in RAS or B-RAF are responsible for a large proportion of human cancers. MEK1 is activated by phosphorylation of S218 and S222 in its activation segment as catalyzed by RAF kinases in an intricate process that involves a KSR scaffold. Besides functioning as a scaffold, the kinase activity of KSR is also required for MEK activation. MEK1 regulation is unusual in that S212 phosphorylation in its activation segment is inhibitory. Moreover, active ERK catalyzes a feedback inhibitory phosphorylation of MEK1 T292 that serves to downregulate the pathway.  相似文献   

18.
The two regulatory residues that control the enzymatic activity of the mitogen-activated protein (MAP) kinase ERK2 are phosphorylated by the unique MAP kinase kinases MEK1/2 and dephosphorylated by several tyrosine-specific and dual specificity protein phosphatases. Selective docking interactions facilitate these phosphorylation and dephosphorylation events, controlling the specificity and duration of the MAP kinase activation-inactivation cycles. We have analyzed the contribution of specific residues of ERK2 in the physical and functional interaction with the ERK2 phosphatase inactivators PTP-SL and MKP-3 and with its activator MEK1. Single mutations in ERK2 that abrogated the dephosphorylation by endogenous tyrosine phosphatases from HEK293 cells still allowed efficient phosphorylation by endogenous MEK1/2. Discrete ERK2 mutations at the ERK2 docking groove differentially affected binding and inactivation by PTP-SL and MKP-3. Remarkably, the cytosolic retention of ERK2 by its activator MEK1 was not affected by any of the analyzed ERK2 single amino acid substitutions. A chimeric MEK1 protein, containing the kinase interaction motif of PTP-SL, bound tightly to ERK2 through its docking groove and behaved as a gain-of-function MAP kinase kinase that hyperactivated ERK2. Our results provide evidence that the ERK2 docking groove is more restrictive and selective for its tyrosine phosphatase inactivators than for MEK1/2 and indicate that distinct ERK2 residues modulate the docking interactions with activating and inactivating effectors.  相似文献   

19.
Extracellular signal-regulated kinase 2 (ERK2) is located in the cytoplasm of resting cells and translocates into the nucleus upon extracellular stimuli by active transport of a dimer. Passive transport of an ERK2 monomer through the nuclear pore is also reported to coexist. We attempted to characterize the cytoplasmic retention and nuclear translocation of fusion proteins between deletion and site-directed mutants of ERK2 and green fluorescent protein (GFP). The overexpressed ERK2-GFP fusion protein is usually localized to both the cytoplasm and the nucleus unless a cytoplasmic anchoring protein is coexpressed. Deletion of 45 residues, but not 43 residues, from the C terminus of ERK2 prevented the nuclear distribution of the ERK2-GFP fusion protein. Substitution of a part of residues 299-313 to alanine residues also prevented the nuclear distribution of the ERK2-GFP fusion protein without abrogation of its nuclear active transport. These observations may indicate that the passive diffusion of ERK2 into the nucleus is not simple diffusion but includes a specific interaction process between residues 299-313 and the nuclear pore complex and that this interaction is not required for the active transport. We also showed that substitution of Tyr(314) to alanine residue abrogated the cytoplasmic retention of the ERK2-GFP fusion protein by PTP-SL but not by MEK1.  相似文献   

20.
The ubiquitous vacuolar H(+)-ATPase, a multisubunit proton pump, is essential for intraorganellar acidification. Disruption of its function leads to disturbances of organelle function and cell death. Here, we report that overexpression of the B2 subunit of the H(+)-ATPase inhibits apoptosis. This antiapoptotic effect is not mediated by an increase in H(+)-ATPase activity but through activation of the Ras-mitogen-activated protein kinase (MAPK)-signaling pathway that results in the serine phosphorylation of Bad at residues 112 and 155. Increased Bad phosphorylation reduces its translocation to mitochondria, limits the release of mitochondrial cytochrome c and apoptosis-inducing factor and increases the resistance of the B2 overexpressing cells to apoptosis. Screening experiments of kinase inhibitors, including inhibitors of cAMP-activated protein kinase, protein kinase C, protein kinase B, (MAPK/extracellular signal-regulated (ERK) kinase) MEK and Ste-MEK1(13), a cell permeable ERK activation inhibitor peptide, revealed that the B2 subunit of H(+)-ATPase acts upstream of MEK activation in the MEK/ERK pathway to ameliorate apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号