首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Silkworm (Lepidoptera) males produce dimorphic sperm, nucleate eupyrene sperm, and anucleate apyrene sperm. The eupyrene sperm is the ordinary sperm fertilizing eggs, while the function of the apyrene sperm, which are about four times as numerous as the eupyrene sperm, is still uncertain. We found the peristaltic phenomenon at the very late stage of spermatogenesis. Peristalsis occurs in both eupyrene and apyrene sperm bundles. Through peristaltic action, cytoplasm of the eupyrene sperm and both cytoplasm and nuclei of the apyrene sperm are discarded from the posterior end of the sperm bundles. Peristaltic squeezing seems to be a process to eliminate the irregular nuclei of apyrene sperm while preserving the nuclei of eupyrene sperm.  相似文献   

2.
Two types of sperm are produced in the silkworm, Bombyx mori. Nucleate eupyrene sperm is an ordinary sperm that contributes to fertilization, while anucleate apyrene sperm is considered to play important roles in assisting eupyrene sperm. At the very late stage of spermatogenesis, a phenomenon called "peristaltic squeezing" occurs in both types of sperm, whereby cytoplasm of the eupyrene and nuclei of the apyrene sperm are discarded from the posterior end, forming matured sperm. In this study, rhodamine-phalloidin staining for actin was applied to sperm bundles. Before the start of peristaltic squeezing, actin filament networks are spread on the cyst cells and constrictions by the networks appear in several places of the bundles. Actin particles, which are later recognized as circlets, are localized within the bundles. Squeezing action by the networks occurs from the anterior region and transfers toward the posterior, eliminating cytoplasm together with circlets from the posterior end. It seems that actin filaments contribute to the peristaltic squeezing of the sperm bundles in Bombyx mori.  相似文献   

3.
Observations with immunostaining for tubulin and electron microscopy revealed that silkworm eupyrene spermiogenesis was characterized by an attachment of the basal body to the nucleus except in the period of movement for unidirectional arrangement. In young eupyrene sperm, a microtubule basket caught the nucleus, which thereafter was transformed elliptically. Microtubules were also observed along the elongated acrosome and mitochondrial derivatives. During apyrene spermiogenesis, however, the basal body was not attached to the nucleus and approached the head cyst cell after the completion of unidirectional arrangement, leaving the round nucleus in the middle of the cell. The presence or absence of the phenomenon in which the basal body attaches to the nucleus seems to be essential in the course of diverse spermatogenesis of the silkworm.  相似文献   

4.
Silkworm males produce dimorphic sperm, nucleate eupyrene sperm and anucleate apyrene sperm. Apyrene sperm have been speculated to have an assisting role in fertilisation. However, the coexistence of eupyrene and apyrene sperm in the testis and female reproductive organs has made it difficult to define the role of apyrene sperm. Polyploid males are highly sterile. Microscopic observation revealed that the elimination of eupyrene nuclei by peristaltic squeezing caused the sterility of polyploids. Heat-shock applied to pupae of Daizo males (DH) also induced high sterility due to the lack of normal apyrene sperm. When eupyrene sperm of sterile DH males and apyrene sperm of sterile polyploid males were mixed by double copulation, a remarkable increase in fertility of the double-mated females was observed. This finding strongly suggests that the apyrene sperm are indispensable in fertilisation of the silkworm and that polyploid apyrene sperm function as a substitute for diploid sperm. We established an experimental system in which we can separate the two types of sperm for further studies on their functions without chemical and/or mechanical treatments.  相似文献   

5.
The silkworm, Bombyx mori, has a dimorphic sperm system. The eupyrene sperm is the sperm to fertilize eggs and the apyrene sperm plays a crucial role for assisting fertilization. Heat-treated (33 degrees C for 96h) Daizo (DH) males, one of the strains in the silkworm, produce only eupyrene sperm, while in triploid males only apyrene sperm are functional. Though both types of males are found to be sterile, double copulation of the two males with a single female greatly increases fertility. Here we examined the fertilizing ability of eupyrene and apyrene sperm by means of an artificial insemination technique previously established in B. mori. Neither the eupyrene sperm collected from DH males, nor the apyrene sperm from triploid males have the ability to fertilize eggs. Artificial insemination with the mixture of eupyrene and apyrene sperm leveled up the frequency of fertilized eggs to more than 80%. When cryopreserved DH sperm (eupyrene sperm) were subjected to the same experiment, more than 95% fertilized eggs were obtained. These results confirmed that apyrene sperm play an important and indispensable role in fertilization in B. mori. Separate collection of functional eupyrene sperm and functional apyrene sperm and success of fertilization by means of the artificial insemination technique are applicable for further studies to elucidate the function of apyrene sperm.  相似文献   

6.
Female moths of Bombyx mori were artificially inseminated with cryopreserved semen. The fertility of inseminated females varied from 0% to 76.9% depending on the strain. Addition of fresh semen from triploid males, which are infertile but whose semen includes intact apyrene sperm, greatly improved fecundity of cryopreserved semen from normal males. Frozen apyrene sperm from the triploid donors also improved the fecundity of females, inseminated with cryopreserved normal semen, but less than fresh semen from triploid males. Fertilization success in B. mori requires the presence of both, intact eupyrene and apyrene sperm. Our results show that eupyrene sperm tolerate the cryopreservation process better than apyrene sperm. Hence, we recommend to add apyrene sperm from the triploid donors as helper sperm routinely to cryopreserved semen in artificial insemination. This may advance the application of cryopreservation as a routine technique to maintain silkworm resources. The technique may also be applicable to other moth and butterfly species which, like B. mori, possess eupyrene and apyrene sperm.  相似文献   

7.
《Journal of Asia》2022,25(2):101916
There are two sperm morphs of silkworm, the nucleated spermatozoa (eupyrene) and anucleated spermatozoa (apyrene). Eupyrene sperm cannot complete fertilization successfully without the apyrene sperm. Here a modified rapid and efficient method for sperm identification was developed, after 10 s of fixation in paraformaldehyde and 30 s of 4′6-diamidino-2-phenylindole (DAPI) or propidium Iodide (PI) staining, the sperm bundles can be detected easily using a fluorescence microscope. Sperm maturation process of silkworm from the fifth instar larvae to the adult was described with the above method, the precise time of earliest elongate apyrene bundles was detected on day 2 of pre-pupation, with a ratio of 5% in total sperm bundles, after which the percentage of apyrene sperm bundles increased rapidly and attained a relatively stable ratio of 75% at the end of pupation and nearly 80% after eclosion. Delayed mating leads to apyrene sperm accumulation and damaged fertilization. Previous study showed that ecdysone can increase the frequency of apyrene sperm bundles in vitro. Here 20-hydroxyecdysone (20E) was injected into hemolymph of the 2-d-old fifth instar larvae, the worms entered into mounting period after three days injection, but no apyrene sperm bundles were induced unless day 2 of pre-pupation. Interestingly, maturation of eupyrene sperm bundles were accelerated, and the ratio of eupyrene sperm bundles increased and exhibited a dose-dependent effect after 20E injection, which indicated that the development of eupyrene sperm can be accelerated by ecdysone before pupation of silkworm in vivo. These results will provide new clues for lepidopteran pest control.  相似文献   

8.
Dichotomous spermatogenesis was examined in relation to diapause in the sweet potato hornworm, Agrius convolvuli. In non-diapause individuals, eupyrene metaphase began during the fifth larval instar and eupyrene spermatids appeared in wandering larvae. Bundles of mature sperm were found after pupation. Apyrene spermatocytes also appeared during the fifth larval instar, but meiotic divisions occurred irregularly and their nuclei were discarded from the cells during spermiogenesis. Morphometric analyses of flagellar axonemes showed a variable sperm number in apyrene bundles. The variation ranging from 125 to 256 sperm per bundle indicated abnormal divisions or the elimination of apyrene spermatocytes. In diapause-induced hornworms, spermatogenesis progressed similarly during the larval stages. The cessation of spermatogenesis during diapause is characterized by 1) secondary spermatocytes and sperm bundles degenerating gradually as the diapause period lengthens, and 2) spermatogonia or primary spermatocytes appearing throughout diapause. A TUNEL (TdT-mediated dUTP-biotin nick end-labeling) assay revealed that DNA fragmentation occurred in the nuclei of secondary spermatocytes and early spermatids. Aggregates of heterochromatin along the nuclear membrane indicated the onset of apoptosis, and condensed chromatin was confirmed by electron microscopy to be the apoptotic body. These results show that the degenerative changes in spermatogenic cells during pupal diapause were controlled by apoptosis.  相似文献   

9.
Summary

Eupyrene and apyrene spermatozoa are contained in separate cysts in the testis of the butterfly Atrophaneura alcinous. Spermatozoa of both types from various parts of the male reproductive tract were examined with particular reference to their morphological characteristics. All spermatozoa collected from the vas deferens and the vesicula seminalis were found to be immotile under a dissecting microscope. No spermatozoa of either type were recognized in any part of the ejaculatory duct. Within the testis, eupyrene spermatozoa are present in bundles and each spermatozoon has a slender nucleus with an acrosome and a long flagellum containing mitochondrial derivatives. Two kinds of appendages, lacinate and reticular, are present on the surface of the sperm membrane. They are replaced with an extracellular sheath during passage through the vas deferens. In contrast, apyrene spermatozoa have neither nucleus nor acrosome, whereas a cup-shaped structure was found at the sperm tip instead of the acrosome. Unlike eupyrene spermatozoa, they are surrounded by a concentric sheath outside the sperm membrane in the vas deferens. Individual apyrene spermatozoa and coiled bundles of eupyrene spermatozoa were both found to accumulate in the vesicula seminalis before mating. These morphological changes during passage through the male reproductive tract suggests the occurrence of a kind of maturation and capacitation process reminiscent of mammalian spermatozoa.  相似文献   

10.
Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as “PMFBP1” in GenBank’s RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.  相似文献   

11.
Hamada H  Fugo H 《Zoological science》2007,24(12):1251-1258
Like other Lepidoptera, the silkworm (Bombyx mori) has both nucleated eupyrene and anucleated apyrene sperm that are derived from the same spermatocysts. The former type is responsible for egg fertilization, while the function of the latter is still uncertain. Many hypotheses have been presented concerning the role of the apyrene sperm in mating and fertilization, but none is supported by a convincing experimental approach. The aim of the present study was to enhance the production of apyrene sperm in vitro by using different concentrations of fetal bovine serum (FBS), namely 20%, 30% and 40%, in the culture medium used for cultivating the naked spermatocysts isolated from the silkworm testes at 0 hr, 120 hr, and 192 to approximately 360 hr after the fourth molt. Cultivation of 0-hr spermatocysts was not successful. The development of spermatocysts into eupyrene and apyrene sperm bundles was slightly slower in vitro than in vivo. The overall growth percentage of both eupyrene and apyrene bundles was satisfactory when the spermatocysts were cultivated in TC-100 culture medium containing 30% FBS.  相似文献   

12.
When swallowtail butterflies, Papilio xuthus, are mated by the hand-pairing method, both types of sperm, eupyrene and apyrene sperm, are transferred from the male to the spermatheca via the spermatophore in the bursa copulatrix. This mechanism is demonstrated by two different kinds of experiments. The first set of experiments employed interrupted copulation, and the second set was examination of the sperm in the spermatophore and spermatheca after the termination of copulation. The sperm was transferred 30 min after the start of copulation. The eupyrene sperm was still in the bundle; the number of the bundles ranged from 9 to 108 (mean, 42.7; n = 27). The bundles were gradually released after the completion of copulation, and the free eupyrene spermatozoa then remained in the spermatophore at least 2 h before migrating to the spermatheca. On the other hand, about 160 000 apyrene spermatozoa were transferred to the spermatophore and remained there for more than 1 h. We observed 11 000 apyrene spermatozoa in the spermatheca 12 h after the completion of copulation, but most of this type of sperm disappeared shortly thereafter. In contrast, the eupyrene sperm arrived in the spermatheca more than 1 day after the completion of copulation and remained there at least 1 week. Therefore, these findings suggest that apyrene sperm migrate from the spermatophore to the spermatheca earlier than eupyrene sperm. Accordingly, if females mated multiply, the time difference might avoid the mixing of sperm. In addition, the predominance of sperm from the last mating session may occur not in the bursa copulatrix but in the spermatheca. Received: January 7, 2000 / Accepted: May 24, 2000  相似文献   

13.
The male reproductive tract of Leucoptera coffeella was processed for light and transmission electron microscopy. In the testis, the eupyrene cells are arranged in individual cysts, while the apyrene cysts form aggregates, never observed in other Lepidoptera. Both cysts contain 128 spermatozoa, which differ from the typical pattern. In the seminal vesicle, both types of spermatozoa are dispersed in the lumen, also different from other Lepidoptera. The apyrene spermatozoa are similar to those observed for other Lepidoptera. They present an anterior region covered by a dense cap and the flagellum is composed of a 9 + 9 + 2 axoneme and two mitochondrial derivatives. The eupyrene spermatozoa, however, differ from the typical pattern for Lepidoptera. Their anterior region contains a nucleus, an acrosome and a peculiar arc of eight accessory microtubules connected to the plasma membrane by dense bridges. In the nucleus–flagellum region, the ninth accessory microtubule is assembled between both mitochondrial derivatives, to participate in the axoneme. The flagellum comprises a 9 + 9 + 2 axoneme and two mitochondrial derivatives with paracrystalline cores. External to the plasma membrane and close to the accessory microtubules, there are tufts of an amorphous material, suggesting reduced lacinate appendages, while the reticular ones are absent. The reduction of lacinate appendages and the absence of sperm bundles in the seminal vesicle support the concept that the appendages of other Lepidoptera could be associated with the eupyrene aggregations. The characters ‘number of spermatozoa per cyst’ and ‘absence of bundles’ should be considered plesiomorphic, supporting the position of this taxon in the base of the Ditrysia.  相似文献   

14.
We describe a simple and straightforward procedure for the purification and separation of apyrene and eupyrene forms of lepidopteran sperm. The procedure is generally applicable to both butterfly and moth species with results varying according to the relative amounts of sperm produced and size of sperm storage organs. The technique relies upon inherent differences between eupyene sperm bundles and free apyrene sperm morphology. These differences allow for separation of the sperm morphs by repeated “panning” of sperm bundles into the center of a plastic dish. The purified eupyrene sperm bundles can then be removed and apyrene sperm collected from the supernatant by centrifugation. Efficacy of the purification process was confirmed by light microscopy and gel electrophoresis of the resulting fractions. Both one- and two-dimensional gel electrophoresis identified significant protein differences between the fractions further suggesting that the panning procedure effectively separated eurpyrene from apyrene sperm. The panning procedure should provide a convenient and accessible technique for further studies of sperm biology in lepidopterans.  相似文献   

15.
Two types of sperm, nucleate eupyrene and anucleate apyrene, occur in the silkworm as in other lepidopteran species. Hormones and other substances have been assumed to play important roles in sperm dimorphism. We established an in vitro cultivation system for silkworm spermatocytes, and found that apyrene sperm are not produced when spermatocytes from larval testes are cultivated, though eupyrene spermatocytes develop normally into mature sperm. Based on the fact that ecdysteroid titers increase rapidly and peak 1 day after spinning, and that the amount of glycogen reaches its peak 1 day before the spinning stage, we studied the effects of adding glucose and/or 20-hydroxyecdysone to the culture medium. The experiments disclosed a significant additive effect of both substances on apyrene sperm production.  相似文献   

16.
Bombyx spermatogonia are bipotential, producing nucleate eupyrene sperm and anucleate apyrene sperm. An in vitro cultivation of spermatocysts of Bombyx mori from spermatocytes to matured sperm was established. The present experiment made clear that: (i) spermatocysts must be isolated; (ii) constant shaking at 45 r.p.m. was necessary; and (iii) the addition of Bombyx hemolymph (BH) was indispensable for successful cultivation. In the absence of BH, spermatogenesis proceeded normally for 2 or 3 days and, thereafter, spermatocytes and sperm bundles began to degenerate. The best results for normal eupyrene spermatogenesis were obtained when culture medium containing BH of the corresponding stage was used in every exchange of the medium at 72 h intervals. None or only a small number of apyrene sperm bundles was produced by this culture system when spermatocysts from larval testes were used, although eupyrene spermatogenesis proceeded normally to form matured, or squeezed, sperm bundles.  相似文献   

17.
Control of the eupyrene-apyrene sperm dimorphism in Lepidoptera   总被引:1,自引:0,他引:1  
Lepidoptera males bear concomitantly nucleate (eupyrene) and anucleate (apyrene) spermatozoa. Both kinds of spermatozoa reach the spermatheca of inseminated females but only the eupyrene ones fertilize the eggs. The functions of the apyrene spermatozoa are still uncertain. Eupyrene spermatogenesis is regular and highly sensitive to genetic and experimental manipulations while apyrene spermatogenesis is irregular and withstands these manipulations. Both kinds of spermatozoa derive from the same kind of bipotential spermatocytes. The shift of spermatocyte commitment from eupyrene to apyrene spermatogenesis is induced by a haemolymph factor that becomes active just before or after pupation, depending on species. Accordingly, eupyrene spermatogenesis starts during larval instars and stops after pupation while apyrene spermatogenesis begins just before or after pupation, depending on the species, and persists in the imago. The shift is related to shortening of meiotic prophases and blocking synthesis of a meiotic lysine-rich protein fraction in apyrene cells. From spermatogonia proliferation to early spermatocytes, spermatogenesis is a quasi-independent process. Afterwards, it becomes discontinuous and is punctuated by predetermined stations. Progress to a subsequent station is an 'all or none' phenomenon, regulated by cues linked to fluctuations of the main morphogenetic hormones titers. In absence of a particular cue, the cells stop advancing towards the next station and eventually degenerate.  相似文献   

18.
The gypsy moth, Lymantria dispar, produces two structurally and genetically distinct types of spermatozoa. The eupyrene spermatozoa are genetically haploid and structurally typical. The apyrene spermatozoa are anucleate and structurally different from eupyrene spermatozoa. To understand further the events contributing to meiotic chromosome missegregation in apyrene spermatocytes, we examined the progression of meiosis in these cells with respect to their eupyrene counterparts. Chromosomal bouquet formation and fusion of nucleolar organizing regions are disrupted in apyrene nuclei. In addition, the chromatin of apyrene nuclei is prematurely and extremely condensed compared with that of eupyrene nuclei. An antibody to the conserved synaptonemal complex protein 3 (SCP3) labeled eupyrene pachytene chromosomes, but not apyrene pachytene chromosomes. In addition, apyrene meiotic spindles are missing a subset of microtubules, which likely include kinetochore microtubules. Because the condensation behavior of meiotic chromatin in apyrene spermatocytes deviates from that of eupyrene spermatocytes, we examined the appearance and distribution of the phosphorylated form of histone H3, but no significant differences in histone H3 phosphorylation were found between apyrene and eupyrene spermatocytes. We argue that because a pachytene checkpoint is not initiated in apyrene spermatocytes, this system may provide a way to understand better the underlying biochemical connections between pairing, recombination, synapsis, kinetochore assembly and segregation of chromosomes during meiosis in a higher eukaryote.  相似文献   

19.
Lepidopteran primary spermatocytes are bipotential leading first to regular (eupyrene) and later to irregular (apyrene) meiotic divisions. The kinetics of the lysine-rich proteins during this dichotomous meiosis was studied using the fluorescent dye sulfoflavine. Throughout the spermatogonial divisions, the chromatin fluoresces while the cytoplasm remains unstained. Reversely, during the meiotic prophase, the cytoplasm fluoresces strongly while the nuclei show only a few weakly fluorescing structures. From premetaphase to telophase the meiotic chromosomes fluoresce strongly again. But during this period, only in the eupyrene cells the cytoplasm remains strongly fluorescent; the fluorescence vanishs in the cytoplasm of the apyrene spermatocytes. Thus, the regular (eupyrene) meiotic divisions and the presence of a lysine-rich protein fraction in the cytoplasm of the dividing spermatocytes of Lepidoptera, are probably related.  相似文献   

20.
Abdominal injection of 1 μg aqueous 20-hydroxyecdysone into Anagasta kuehniella, anytime prior to the initiation of sperm release from the testes, prevents the impending release of eupyrene sperm bundles. Apyrene sperm release is not prevented and there is complete recovery of eupyrene release by the following cycle 24 hr later. If 20-hydroxyecdysone is administered on consecutive days, no eupyrene bundles are released and although apryene sperm release continues, it diminishes with time. The effect of 20-hydroxyecdysone in preventing eupyrene release is dose dependent. Administration of decreasing 20-hydroxyecdysone dosages results in increasing numbers of eupyrene bundles released. When a single injection of 20-hydroxyecdysone is administered to isolated abdomens, recovery time of eupyrene sperm release is slower than in whole moths and total recovery is not seen even by 5 days after administration. Apyrene sperm release is also affected to a greater extent than in whole moths, and in some cases, no apyrene release was detected at all. Treatment with 20-hydroxyecdysone prevents cupyrene bundles from passing through the testicular basilar membrane into the vasa efferentia, thus causing a build up of bundles near the basilar membrane but no disintegration of these eupyrene sperm bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号