首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of growth hormone-releasing factor (GHRF) from rat hypothalamus was investigated in vitro. After 60 min preincubation the released GHRF from sliced rat hypothalamic fragments during 60 min incubation was detected by a highly specific and sensitive radioimmunoassay for rat GHRF. The release of GHRF was Ca2+-dependent and enhanced by high concentration of K+. Insulin-like growth factor-1 (IGF-1) significantly decreased GHRF release to 65% and 84% of the control at concentrations of 10(-8) M and 10(-7) M, respectively. These results suggest that this in vitro system is useful for the investigation of the mechanism of GHRF release from the hypothalamus and that IGF-1 is probably involved in the feedback inhibition of growth hormone secretion by attenuating GHRF release from the hypothalamus besides countering the effect of GHRF on the pituitary.  相似文献   

2.
We investigated the effect of sodium chloride and adrenergic agents on the release of atrial natriuretic factor (ANF) using working heart-lung preparations from Dahl salt-hypertension sensitive (S) and Dahl salt-hypertension resistant (R) rats. High concentrations of NaCl moderately increased ANF release, but this was attributed to small increases in left atrial pressure rather than to a direct effect of NaCl on ANF release; S and R rats responded similarly. Neither isoproterenol (beta 1 + beta 2 agonist) nor clonidine (alpha 2 agonist) had any effect on ANF release in the heart-lung preparation. In contrast, phenylephrine (alpha 1 agonist) stimulated ANF release. This could not be accounted for by change in atrial pressure and appeared to be a direct effect. S and R rats both released ANF in response to phenylephrine, but there was a modest tendency for hypertensive S rats to release more ANF than normotensive R rats, which is consistent with previous data on mechanically induced (atrial stretch) ANF release in these strains.  相似文献   

3.
The effects of 24-hour intracerebroventricular infusion of human atrial natriuretic factor (ANF) and two related fragments were studied in conscious sheep. ANF (1-28) had no effect on either mean arterial pressure (MAP) or heart rate (HR) when infused at 3 or 10 micrograms/hr, however a small diuresis and an increase in urinary sodium (Na) excretion was observed. The smaller fragment, ANF (5-27) infused at 10 micrograms/hr, increased MAP, HR and body temperature, although the same rate of infusion of ANF (5-28) was without effect. All peptides increased plasma sodium concentration and plasma osmolality. None of the peptides affected plasma ACTH, glucose or renin concentration. ANF (1-28) had no effect on either Na intake or water intake in Na-depleted sheep. These studies suggest that members of the ANF family can influence a number of physiological functions following central administration.  相似文献   

4.
The transport and oxidation of glucose, the content of fructose 1,6-diphosphate, and the release of insulin were studied in microdissected pancreatic islets of ob/ob mice incubated in Krebs-Ringer bicarbonate medium. Under control conditions glucose oxidation and insulin release showed a similar dependence on glucose concentration with the steepest slope in the range 5-12mm. The omission of Ca(2+), or the substitution of choline ions for Na(+), or the addition of diazoxide had little if any effect on glucose transport. However, Ca(2+) or Na(+) deficiency as well as diazoxide (7-chloro-3-methyl-1,2,4-benzothiadiazine 1,1-dioxide) or ouabain partially inhibited glucose oxidation. These alterations of medium composition also increased the islet content of fructose 1,6-diphosphate, as did the addition of adrenaline. Phentolamine [2-N-(3-hydroxyphenyl)-p-toluidinomethyl-2-imidazoline] counteracted the effects of adrenaline and Ca(2+) deficiency on islet fructose 1,6-diphosphate. After equilibration in Na(+)-deficient medium, the islets exhibited an increase in basal insulin release whereas the secretory response to glucose was inhibited. The inhibitory effects of Na(+) deficiency on the secretory responses to different concentrations of glucose correlated with those on (14)CO(2) production. When islets were incubated with 17mm-glucose, the sudden replacement of Na(+) by choline ions resulted in a marked but transient stimulation of insulin release that was not accompanied by a demonstrable increase of glucose oxidation. Galactose and 3-O-methylglucose had no effect on glucose oxidation or on insulin release. The results are consistent with a metabolic model of the beta-cell recognition of glucose as insulin secretagogue and with the assumption that Ca(2+) or Na(+) deficiency, or the addition of adrenaline or diazoxide, inhibit insulin release at some step distal to stimulus recognition. In addition the results suggest that these conditions create a partial metabolic block of glycolysis in the beta-cells. Hence the interrelationship between the processes of stimulus recognition and insulin discharge may involve a positive feedback of secretion on glucose metabolism.  相似文献   

5.
The role of coronary hemodynamics and cardiac beating on atrial natriuretic factor (ANF) release was studied in the isolated Langendorff-perfused rat heart. ANF release was measured by radioimmunoassay. When the coronary flow rate was changed, ANF release decreased or increased in a flow-dependent manner. When the perfusion pressure was changed, ANF release also increased or decreased, respectively, with concomitant changes in coronary flow rate. Furthermore, perfusion with 50 mM potassium chloride showed immediate cardiac arrest and a decrease of ANF release to an undetectable level with a significant decrease in coronary flow. However, low but readily detectable amounts of ANF were released when coronary flow rate was maintained. These results may suggest that coronary hemodynamics and cardiac beating could be factors modulating ANF secretion from the atrium.  相似文献   

6.
The role of sodium ion in superoxide (O2-) generation by human peripheral neutrophils was investigated. Cells were activated by exposure to the synthetic tripeptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP), and O2- release was assessed by ferricytochrome c reduction after 5 min of incubation at 37 degrees C in the presence of FMLP 4 X 10(-8) M. In the absence of monovalent cations (isotonic glucose), negligible O2- generation occurred. There was a progressive increase in the magnitude of FMLP-induced O2- generation with increasing Na+ concentration up to 90 mM, where the response was noted to plateau. Varying the K+ concentration (1 to 10 mM) had no effect on the amount of O2- produced in the presence of Na+ 140 mM. FMLP also stimulated 22Na+ and 48Ca2+ uptake by the cells in a dose- and time-dependent fashion. FMLP-induced 22Na+ uptake appeared to be independent of the external Ca2+ concentration ( to 4 mM). In contrast, there was a progressive decrease in themagnitude of the FMLP-induced increase in 45Ca2+ uptake as the Na+ concentration was reduced by replacement with choline+ or glucose. These studies support a requirement for Na+ in FMLP-induced O2- generation and suggest that a Na+ influx may underlie the nature of this requirement. The data are also consistent with the hypothesis that a Na+ influx may precede the Ca2+ influx in the FMLP-induced activation sequence.  相似文献   

7.
We have substituted choline chloride, tetramethylammonium chloride, sucrose, or glucose for culture medium sodium chloride. When culture medium sodium is reduced below physiological levels (143 mM) by replacement of graded concentrations of sodium chloride with equivalent concentrations of choline chloride, normal fibroblasts approach proliferative inactivity in the presence of 90 mM Na, while their Rous sarcoma virus (RSV)-infected counterparts proliferate actively; both normal and neoplastic cells die with further sodium reduction. When culture medium NaC; is replaced with tetramethylammonium chloride, however, both normal and RSV-infected fibroblasts alike approach proliferative inactivity in the presence of 110 mM Na and both die off in the presence of 90 mM Na. When culture medium NaCl is replaced with sucrose or glucose yet another set of results is obtained: both normal and RSV-infected fibroblasts proliferate at reduced, although significant, rates in the presence of 42 mM Na. It is clear from our experimental results that the effects of reduction of culture medium sodium on cell proliferation differ markedly with the use of different sodium chloride substitutes. Caution must be exercised, therefore, in drawing inferences concerning the role of sodium in mitogenesis from experimental studies based on the tactic of reduction of external sodium.  相似文献   

8.
1. Studies of the synthesis and release of radioactive acetylcholine in rat brain-cortex slices incubated in Locke-bicarbonate-[U-(14)C]glucose media, containing paraoxon as cholinesterase inhibitor, revealed the following phenomena: (a) dependence of K(+)-or protoveratrine-stimulated acetylcholine synthesis and release on the presence of Na(+) and Ca(2+) in the incubation medium, (b) enhanced release of radioactive acetylcholine by substances that promote depolarization at the nerve cell membrane (e.g. high K(+), ouabain, protoveratrine, sodium l-glutamate, high concentration of acetylcholine), (c) failure of acetylcholine synthesis to keep pace with acetylcholine release under certain conditions (e.g. the presence of ouabain or lack of Na(+)). 2. Stimulation by K(+) of radioactive acetylcholine synthesis was directly proportional to the external concentration of Na(+), but some synthesis and release of radioactive acetylcholine occurred in the absence of Na(+) as well as in the absence of Ca(2+). 3. The Na(+) dependence of K(+)-stimulated acetylcholine synthesis was partly due to suppression of choline transport, as addition of small concentrations of choline partly neutralized the effect of Na(+) lack, and partly due to the suppression of the activity of the Na(+) pump. 4. Protoveratrine caused a greatly increased release of radioactive acetylcholine without stimulating total radioactive acetylcholine synthesis. Protoveratrine was ineffective in the absence of Ca(2+) from the incubation medium. It completely blocked K(+) stimulation of acetylcholine synthesis and release. 5. Tetrodotoxin abolished the effects of protoveratrine on acetylcholine release. It had blocking effects (partial or complete) on the action of high K(+), sodium l-glutamate and lack of Ca(2+) on acetylcholine synthesis and release. 6. Unlabelled exogenous acetylcholine did not diminish the content of labelled tissue acetylcholine, derived from labelled glucose, suggesting that no exchange with vesicular acetylcholine took place. In the presence of 4mm-KCl it caused some increase in the release of labelled acetylcholine. 7. The barbiturates (Amytal, pentothal), whilst having no significant effects on labelled acetylcholine synthesis in unstimulated brain except at high concentration (1mm), diminished or abolished (at 0.25 or 0.5mm) the enhanced release of acetylcholine, due to high K(+) or lack of Ca(2+). The fall in tissue content of acetylcholine, due to lack of Ca(2+), was diminished or abolished by pentothal (0.25 or 0.5mm) or Amytal (0.25mm).  相似文献   

9.
Removal of exogenously administered rat ANF (99-126) (rANF) from the rabbit coronary vasculature was investigated. Rabbit hearts were perfused using a modified Langendorff technique and ANF concentrations in the perfusate were measured by a radio-receptor assay. Under these conditions no major degradation of ANF was observed. On perfusion, however, the heart liberated large amounts of ANF. This release peaked 15 minutes after the initiation of perfusion, (685 + 220 pM) and then fell to a sustained basal level (305 + 80 pM) after 45 minutes. Although an increase in the perfusate flow rate reduced the ANF concentration, there was no significant difference in the rate of ANF release between the two flow rates used. After momentary cessation of flow ANF concentration fell to a significantly lower level, however, once again no significant change in rate of release occurred. These results suggest that the heart is not a major site of ANF degradation and that alterations in flow rate through the coronary vascular bed can cause changes in amounts of ANF released.  相似文献   

10.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

11.
Atrial natriuretic factor inhibits vasopressin secretion in conscious sheep   总被引:1,自引:0,他引:1  
To test the hypothesis that atrial natriuretic factor (ANF) has a centrally mediated action on body fluid homeostasis, the effects of intracerebroventricularly (ICV) infused ANF on plasma vasopressin (AVP) concentration and urinary water and electrolyte excretion were investigated in euhydrated and water-deprived conscious sheep. ICV ANF decreased plasma AVP concentration and increased urinary free water excretion in euhydrated sheep, with excretion of Na and K unaltered. However, ICV ANF did not affect urinary volume, free water clearance, or excretion of Na and K in dehydrated animals, although plasma AVP concentration was significantly decreased. The relationship between urine volume and plasma AVP concentration was fitted by a power curve: urine volume = 0.79 X [AVP]-0.71; urine volume changes very little as a function of AVP concentration at the higher ranges. Intravenous infusion of the same amount of ANF was without effect on plasma AVP concentration or urinary excretion in both euhydrated and dehydrated animals. Mean arterial pressure was unchanged throughout all experiments. These results are consistent with the hypothesis that central ANF inhibits AVP secretion.  相似文献   

12.
The release of atrial natriuretic polypeptides from spontaneously beating isolated rat atria was found to be sensitive to the increase in the concentration of sodium ion. The osmotic pressure, when produced by pharmacologically inactive choline chloride, also increased the release of ANP but substantially less than the sodium ion. Sodium ion and osmotic pressure stimulated the release of ANP in the hyperosmotic but not in the hypo-osmotic range. Neither stretch nor several neurotransmitters tested had any effects on the rate of ANP secretion.  相似文献   

13.
Electrical stimulation of hypophysical posterior lobes in vivo evokes a significant decrease of plasma growth hormones (GH) and an increase of plasma corticotropin (ACTH) concentrations. Electrical stimulation of posterior lobes in vitro evokes the simultaneous release of GH inhibiting factor(s) (GHRIF) and ACTH releasing factor(s) (CRF) into the medium. Pretreatment of media with thioglycolate abolishes the CRF and GHRIF activity, but reveals GH releasing factor(s) (GHRF). Median eminence extracts and vasopressin have potent GHRF and CRF activity. Vasopressin may account fully for the CRF and partially for GHRF activity. Results suggest that hypothalamo-neurohypophysical axons release GHRIF, vasopressin and possibly a GHRF into a portal circulation to modulate the secretion of GH and ACTH.  相似文献   

14.
Observations of cells transformed by the Bryan strain of Rous sarcoma virus (RSV-BH) suggested that the intracellular concentrations of sodium ion (Na+) may play a critical role in cellular metabolism. In an attempt to manipulate intracellular Na+, chick embryo cells were exposed to graded concentrations of Na+ in the cellular growth medium, and the effects on capacity for glucose uptake was examined. After incubation for six hours, the incorporation rate of 2-deoxyglucose (used as a substitute for glucose) was proportional to the external Na+ concentration over the range, 100 mM to 200 mM. Cells transformed by RSV-BH were less responsive than nontransformed cells to differences in Na+ at low concentrations. The changes were specifically dependent upon Na+, since K+, Li+, or choline + were ineffective as substitutes, and increasing the ionic strength above that of 120 mM Na+ was effective only when Na+ was the added cation.  相似文献   

15.
Atrial natriuretic factor (ANF) and dopamine (DA) are both important regulators of sodium and water transport across renal proximal tubules. Many evidences suggest that some of ANF inhibitory effects on sodium and water reabsorption are mediated by dopaminergic mechanisms. We have previously reported that ANF stimulates extraneuronal DA uptake in external renal cortex by activation of NPR-A receptors coupled to cGMP signal and PKG. Moreover, ANF enhanced DA-induced inhibition of Na(+)-K(+) ATPase activity. The aim of the present study was to evaluate if ANF could alter also renal DA release, catabolism and turn over. The results indicate that ANF did not affect basal secretion of the amine in external renal cortex or its KCl-induced release, but diminished DA turn over. Moreover, ANF diminished COMT and did not alter MAO activity. In conclusion, present results as well as previous findings show that ANF modifies DA metabolism in rat external renal cortex by enhancing DA uptake and decreasing COMT activity. All those effects, taken together, may favor DA accumulation into renal cells and increase its endogenous content and availability. This would permit D1 receptor recruitment and stimulation and in turn, Na(+), K(+)-ATPase activity over inhibition that results in decreased sodium reabsorption. Therefore, ANF and DA could act via a common pathway to enhance natriuresis and diuresis.  相似文献   

16.
Atrial natriuretic factor (ANF) has been shown to bind to specific receptors on vascular smooth muscle cells (VSMC) and to cause an increase in intracellular cyclic GMP (cGMP) content. We have recently demonstrated that a prominent Na+,K+,Cl- cotransport system is present in VSMC and that a permeable cGMP analog (8-bromo-cGMP) stimulates activity of the cotransporter. We have also shown that the ANF peptide, rat atriopeptin III, stimulates Na+,K+,Cl- cotransport and elevates intracellular cGMP levels in VSMC. In the present study, we tested the hypothesis that ANF stimulation of Na+,K+,Cl- cotransport occurs via an increase in cGMP levels. When the quinolinedione, 6-anilo-5,8-quinolinedione (LY83583) (10 microM), was used to block formation of cGMP in VSMC from primary cultures of rat thoracic aorta, it was found that both basal and rat atriopeptin III (100 nM)-stimulated Na+,K+,Cl- cotransport were significantly inhibited. The effect of LY83583 was dose-dependent and the half-maximal inhibitory concentration was 0.5 microM. LY83583 also inhibited cotransport in the presence of a maximal concentration of 8-bromo-cGMP. However, this inhibition was not seen in cells also treated with 2-O-propoxyphenyl-8-azapurin-6-one (M&B 22,948), an inhibitor of cGMP phosphodiesterase. M&B 22,948 alone also increased levels of cotransport. Since inhibition of cGMP formation blocks ANF-stimulated Na+,K+,Cl- cotransport and inhibition of cGMP breakdown enhances Na+, K+, Cl- cotransport, we conclude that ANF stimulation of Na+,K+,Cl- cotransport in VSMC is mediated via increase in intracellular cGMP levels.  相似文献   

17.
In the triad, the complex of transverse (T) tubule and sarcoplasmic reticulum (SR) Ca2+ release is induced from SR by mediation of the T-tubule. We report here evidence that this Ca2+ release is produced by depolarization of the T-tubule moiety. Thus, we found that the amount of [14C]SCN- taken up by T-tubules and triads (but not that by SR) increased upon incubation with (K, Na) gluconate, Mg ATP, indicating that the T-tubule was polarized making the lumenal side (equivalent to the extracellular side of an intact muscle fiber) more positive. Upon mixing with choline chloride, the procedure to induce Ca2+ release, [14C]SCN- uptake decreased, indicating that the T-tubule became depolarized. Activation of the T-tubule polarization by Na+ and prevention of it by digoxin [inhibitor of the (Na+, K+) pump], respectively, led to activation and inhibition of choline chloride-induced SR Ca2+ release.  相似文献   

18.
The effect of glucose concentration on the in vitro release of histamine (HA) was examined, using two different preparations of the mouse hypothalamus. The HA and tele-methylhistamine released from whole blocks of the hypothalamus into the medium linearly increased during 2-h incubation in normal Krebs-Ringer bicarbonate solution in the absence of external depolarizing stimuli. The release of HA from this preparation depended on the temperature and Ca2+ in the medium and was progressively increased with decrease in the glucose concentration from 11.5 to 1 mM. The rate of the HA release was dependent on the absolute concentration of glucose and not on an abrupt change in the concentration. When slices of the hypothalamus were incubated in high K+ medium, a temperature- and Ca2+-dependent HA release was observed. At low concentrations of glucose, the K+ (20 mM)-induced HA release from the hypothalamic slices was also enhanced. Tetrodotoxin (10 microM) inhibited the enhancing effect of a low glucose concentration (2 mM) on the HA release by 60%, in both preparations of the hypothalamus. The possibility that the release of HA from the mouse hypothalamus is regulated by glucose concentration and that activation of neuronal Na+ channels is involved in the enhancement of the HA release by low glucose concentrations warrants further attention.  相似文献   

19.
Pseudomonas C(12)B and other Pseudomonas species released larger amounts of a (35)S-labelled metabolite into the medium when cultured on growth-limiting concentrations of Na(2)SO(4) as opposed to growth in SO(4) (2-)-sufficient media. The metabolite was found at all stages of the culture cycle of Pseudomonas C(12)B and maximum quantities occurred in stationary-phase culture supernatants. The metabolite was not detected when the bacterium was cultured on growth-limiting concentrations of potassium phosphate. The amount of the metabolite present in the medium greatly exceeded that which could be extracted from intact cells and, except for choline chloride, it was independent of the carbon source used for growth. If choline chloride was present in high concentration, then larger amounts of the metabolite were found in the culture medium. The metabolite was not detected extracellularly or intracellularly when the bacterium was grown in SO(4) (2-)-deficient media containing 5mm-l-cysteine. The same metabolite was also synthesized in vitro only when Pseudomonas C(12)B extracts were incubated with choline chloride, ATP, MgCl(2) and Na(2) (35)SO(4). The metabolite-forming system was not subject to repression by Na(2)SO(4) and was completely inhibited by 0.5mm-l-cysteine and activated by Na(2)SO(4) (up to 1.0mm). The metabolite was identified as choline O-sulphate by electrophoresis, chromatography and isotope-dilution analysis. Another (35)S-labelled metabolite was also detected in culture supernatants, but was not identified.  相似文献   

20.
The concentrations of free choline in blood plasma from a peripheral artery and from the transverse sinus, in the CSF, and in total brain homogenate, have been measured in untreated rats and in rats after acute intraperitoneal administration of choline chloride. In untreated rats, the arteriovenous difference of brain choline was related to the arterial choline level. At low arterial blood levels (less than 10 microM) as observed under fasting conditions, the arteriovenous difference was negative (about -2 microM), indicating a net release of choline from the brain of about 1.6 nmol/g/min. In rats with spontaneously high arterial blood levels (greater than 15 microM), the arteriovenous difference was positive, implying a marked net uptake of choline by the brain (3.1 nmol/g/min). The CSF choline concentration, which reflects changes in the extracellular choline concentration, also increased with increasing plasma levels and closely paralleled the gradually rising net uptake. Acute administration of 6, 20, or 60 mg of choline chloride/kg caused, in a dose-dependent manner, a sharp rise of the arterial blood levels and the CSF choline, and reversed the arteriovenous difference of choline to markedly positive values. The total free choline in the brain rose only initially and to a quantitatively negligible extent. Thus, the amount of choline taken up by the brain within 30 min was stored almost completely in a metabolized form and was sufficient to sustain the release of choline from the brain as long as the plasma level remained low. We conclude that the extracellular choline concentration of the brain closely parallels fluctuations in the plasma level of choline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号