首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasmodiophorids are a group of eukaryotic intracellular parasites that cause disease in a variety of economically significant crops. Plasmodiophorids have traditionally been considered fungi but have more recently been suggested to be members of the Cercozoa, a morphologically diverse group of amoeboid, flagellate, and amoeboflagellate protists. The recognition that Cercozoa constitute a monophyletic lineage has come from phylogenetic analyses of small subunit ribosomal RNA genes. Protein sequence data have suggested that the closest relatives of Cercozoa are the Foraminifera. To further test a cercozoan origin for the plasmodiophorids, we isolated actin genes from Plasmodiophora brassicae, Sorosphaera veronicae, and Spongospora subterranea, and polyubiquitin gene fragments from P. brassicae and S. subterranea. We also isolated actin genes from the chlorarachniophyte Lotharella globosa. In protein phylogenies of actin, the plasmodiophorid sequences consistently branch with Cercozoa and Foraminifera, and weakly branch as the sister group to the foraminiferans. The plasmodiophorid polyubiquitin sequences contain a single amino acid residue insertion at the functionally important processing point between ubiquitin monomers, the same place in which an otherwise unique insertion exists in the cercozoan and foraminiferan proteins. Taken together, these results indicate that plasmodiophorids are indeed related to Cercozoa and Foraminifera, although the relationships amongst these groups remain unresolved.  相似文献   

2.
A single or double amino acid insertion at the monomer-monomer junction of the universal eukaryotic protein polyubiquitin is unique to Cercozoa and Foraminifera, closely related 'core' phyla in the protozoan infrakingdom Rhizaria. We screened 11 other candidate rhizarians for this insertion: Radiozoa (polycystine and acantharean radiolaria), a 'microheliozoan', and Apusozoa; all lack it, supporting suggestions that Foraminifera are more closely related to Cercozoa than either is to other eukaryotes. The insertion's size was ascertained for 12 additional Cercozoa to help resolve their basal branching order. The earliest branching Cercozoa generally have a single amino acid insertion, like all Foraminifera, but a large derived clade consisting of all Monadofilosa except Metopion, Helk-esimastix, and Cercobodo agilis has two amino acids, suggesting one doubling event and no reversions to a single amino acid. Metromonas and Sainouron, cercozoans of uncertain position, have a double insertion, suggesting that they belong in Monadofilosa. An alternative interpretation, suggested by the higher positions for Metopion and Cercobodo on Bayesian trees compared with most distance trees, cannot be ruled out, i.e. that the second insertion took place earlier, in the ancestral filosan, and was followed by three independent reversions to a single amino acid in Chlorarachnea, Metopion and Cercobodo.  相似文献   

3.
In recent years, the increased sampling of protein-coding genes from diverse eukaryotes has revealed that many aspects of each gene tree are at odds with other phylogenies. This has led to the belief that each gene tree has unique strengths and weaknesses, suggesting that an accurate picture of eukaryotic relationships will be achieved only through comparative phylogeny using several different genes. To this end, actin genes were characterized from two genera of chlorarachniophytes, Chlorarachnion and Lotharella, and three species of the cercomonad flagellate Cercomonas: Phylogenetic trees including these new actin genes confirm the recently proposed relationship between chlorarachniophytes and cercomonads (Cercozoa) and, more importantly, also show a close relationship between Cercozoa and Foraminifera. Both of these are major eukaryotic groups encompassing extremely diverse organisms, yet there is no strong evidence for the evolutionary position of either from morphological or molecular data. The union of Cercozoa and Foraminifera suggested by actin phylogeny represents a novel step in the long process of determining the broad relationships between all major eukaryotic groups.  相似文献   

4.
Ubiquitin is an omnipresent protein found in all eukaryotes so far analysed. It is involved in several important processes, including protein turnover, chromosome structure and stress response. Parsley (Petroselinum crispum) contains at least two active polyubiquitin (ubi4) genes encoding hexameric precursor proteins. The deduced amino acid sequences of the ubiquitin monomers are identical to one another and to ubiquitin sequences from several other plant species. Analysis of the promoter region of one ubi4 gene revealed putative regulatory elements. In parsley plants, the ubi4 mRNAs were the predominant ubiquitin mRNAs and were present at comparable levels in all plant organs tested. In cultured parsley cells, high levels of ubiquitin gene expression remained unaffected by heat shock, elicitor or light treatment.  相似文献   

5.
Summary Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G+C content of codon third base reveals a positive linear correlation with the genome G+C content of the corresponding species. The slope strongly suggests that the overall G+C content of codons of polyubiquitin genes clearly reflects the genome G+C content by AT/GC substitutions at the codon third position. The G+C content of ubiquitin codon third base also shows a positive linear correlation with the overall G+C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.  相似文献   

6.
Ubiquitin is a 76-amino-acid protein with a remarkably high degree of conservation between all known sequences. Ubiquitin genes are almost always multicopy in eukaryotes, and often are found as polyubiquitin genes—fused tandem repeats which are coexpressed. Seventeen ubiquitin sequences from the amitochondrial protist Trichomonas vaginalis have been examined here, including an 11-repeat fragment of a polyubiquitin gene. These sequences reveal a number of interesting features that are not seen in other eukaryotes. The predicted amino acid sequences lack several universally conserved residues, and individual units do not always encode identical peptides as is usually the case. On the nucleotide level, these repeats are in general highly variable, but one region in the polyubiquitin is extremely homogeneous, with seven repeats absolutely identical. Such extended stretches of homogeneity have never been observed in ubiquitin genes and since substitutions are common in other coding units, it is likely that these repeats are the product of a very recent homogenization or amplification. Correspondence to: P.J. Keeling  相似文献   

7.
Using a tobacco cDNA clone as a probe, a genomic clone named TUQG-4, coding for a tobacco polyubiquitin protein with the five head-to-tail repeats of ubiquitin monomer was isolated. The five ubiquitin units were completely conserved except for the extra phenylalanine at the carboxy terminus of the last ubiquitin monomer. The putative open reading frame identified from the nucleotide sequence showed two possible intron sequences in the coding region for the first ubiquitin monomer. When the amino acid sequence deduced from the nucleotide sequence of TUQG-4 was compared to the amino acid sequences coded by other polyubiquitin genes of tobacco, there were three or four amino acid differences in the sequence. When the nucleotide sequences coding for the ubiquitin monomers were compared for various species origins, the degree of identity was at the highest between the ubiquitin monomers in one polyubiquitin and did not reflect the distance of the phylogenetic relationship.  相似文献   

8.
The complete nucleotide sequences of two Suberites domuncula cDNAs and one Sycon raphanus cDNA, all encoding ubiquitin, have been determined. One cDNA from S. domuncula codes for polyubiquitin with four tandemly repeated monomeric units and the second cDNA encodes ubiquitin fused to a ribosomal protein of 78 amino acids (aa). S. domuncula possesses at least one additional polyubiquitin gene, from which the last two monomers were also sequenced. All analysed genes from S. domuncula encode identical ubiquitin proteins, with only one aa difference (Ala 19) to the human/higher animals ubiquitin (Pro 19). Ubiquitin in S. domuncula is identical with the ubiquitin found in another Demospongia, Geodia cydonium. The cDNA from S. raphanus encodes polyubiquitin with seven tandemly repeated units. All these gene monomers code for the same ubiquitin, which differs from the human/higher animals ubiquitin only at position 24 (Asp in Sycon, Glu in others). However, ubiquitin from S. raphanus (Calcarea) shows two aa differences (positions 19 and 24), when compared with the ubiquitin sequences from the two Demospongiae. In a phylogenetic tree constructed by multiple sequence alignment of all sponge ubiquitin gene monomers so far identified, all monomers from the same species cluster together, with the clear exception of the monomer from S. domuncula ribosomal protein fusion gene. This monomer branches off first from the tree and forms a separate line; this gives evidence for a very ancient split of ubiquitin-ribosomal-protein fusion genes from polyubiquitin encoding genes and their long separate coexistence in eukaryotes. The ubiquitin extension protein from S. domuncula is 78 aa long, displays all characteristics of 76–81 aa long ribosomal fusion proteins and shows 78% identity in the first 73 aa with the human S27a protein. However, its C-terminal sequence: 69-GLTYVYKKSD-78 is more similar to the plant consensus (69-GLTYVYQ/NK-76), than to the higher animal consensus (69-CLTYCFNK-76). This protein isolated from a sponge, belonging to the phylogenetically oldest multicellular animals, the Porifera, branches off first from the phylogenetic tree of metazoan ubiquitin extension proteins of the small ribosomal subunits.  相似文献   

9.
10.
Ubiquitin, a highly conserved 76 amino acid protein, plays a role in targeting intracellular proteins for degradation. Ubiquitin expression was examined during the developmentally programmed atrophy and degeneration of the intersegmental muscles (ISMs) in the hawk-moth, Manduca sexta. A clone containing nine repeats of the ubiquitin coding sequence was isolated from an ISM cDNA library and was used as a probe to examine polyubiquitin expression during development. When the ISMs became committed to degenerate, polyubiquitin gene expression increased dramatically. Injection of 20-hydroxyecdysone, which delays degeneration in this system, prevented the increase in polyubiquitin mRNA. The expression of polyubiquitin occurred without apparent activation of the cell's heat shock response. These data suggest that ubiquitin plays a role in programmed cell death.  相似文献   

11.
The yeast ubiquitin genes: a family of natural gene fusions.   总被引:49,自引:8,他引:41       下载免费PDF全文
Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress.  相似文献   

12.
Ubiquitin is a highly conserved 76 amino acid protein that is generated in the cell by proteolysis of larger proteins containing either polyubiquitin chains or ubiquitin fused to carboxyl extension proteins (CEPs). In humans, the two human ubiquitin-CEP genes are Uba80 and Uba52, which code for ubiquitin fused to ribosomal protein S27a and L40, respectively. Working from a recently generated physical map of human chromosome 2p16, we determined the genetic and physical location and the genomic structure of the Uba80 gene in its entirety. A comparison of Uba80 to Uba52 revealed that the two genes share a conserved 5'-end structure, but that the structure of the ubiquitin coding regions was not conserved. Analysis of 400 bp of the promoter of Uba80 revealed strong similarity not only to the Uba52 promoter, but also to the other known human ribosomal gene promoters that have been identified to date. Homology searches also detected the presence of a pseudogene for Uba80, and the structure of this sequence feature is also reported.  相似文献   

13.
The mouse polyubiquitin gene Ubb is essential for meiotic progression   总被引:1,自引:0,他引:1  
Ubiquitin is encoded in mice by two polyubiquitin genes, Ubb and Ubc, that are considered to be stress inducible and two constitutively expressed monoubiquitin (Uba) genes. Here we report that targeted disruption of Ubb results in male and female infertility due to failure of germ cells to progress through meiosis I and hypogonadism. In the absence of Ubb, spermatocytes and oocytes arrest during meiotic prophase, before metaphase of the first meiotic division. Although cellular ubiquitin levels are believed to be maintained by a combination of functional redundancy among the four ubiquitin genes, stress inducibility of the two polyubiquitin genes, and ubiquitin recycling by proteasome-associated isopeptidases, our results indicate that ubiquitin is required for and consumed during meiotic progression. The striking similarity of the meiotic phenotype in Ubb−/− germ cells to the sporulation defect in fission yeast (Schizosaccharomyces pombe) lacking a polyubiquitin gene suggests that a meiotic role of the polyubiquitin gene has been conserved throughout eukaryotic evolution.  相似文献   

14.
Ubiquitin, a 76 amino acid protein, is covalently attached to abnormal and short-lived proteins, thus marking them for ATP-dependent proteolysis in eukaryotic cells. Free (unconjugated) ubiquitin was localized in hepatoma cells using affinity purified anti-ubiquitin antibodies and colloidal gold immunoelectron microscopy. The anti-ubiquitin antibodies recognize only unconjugated ubiquitin. Ubiquitin is found within the cytoplasm, nucleus, the microvilli, autophagic vacuoles and lysosomes.  相似文献   

15.
泛素化是存在于真核生物中一种重要的翻译后修饰过程,参与调控包括蛋白质降解在内的多种生命活动。实现这一调控过程需要将一个由76个氨基酸组成的泛素蛋白共价连接到底物蛋白上。同时,泛素本身也存在多种翻译后修饰,包括泛素化、磷酸化、乙酰化等,进一步丰富了泛素的修饰类型,决定了底物蛋白不同的命运。近年来,伴随着第65位丝氨酸磷酸化泛素蛋白参与调控线粒体自噬这一突破性进展,泛素蛋白其余磷酸化位点的功能研究也获得越来越多的关注。本文根据目前已有的国内外研究和报道,总结了泛素蛋白已知的磷酸化修饰位点,梳理了泛素蛋白第12位和66位苏氨酸、第57位和65位丝氨酸等位点的磷酸化修饰对其生物物理特性带来的改变,并对相应修饰位点所涉及的生物学功能调控进行了综述。  相似文献   

16.
Retroviral aspartyl proteases are homodimeric, whereas eukaryotic aspartyl proteases tend to be large, monomeric enzymes with 2-fold internal symmetry. It has been proposed that contemporary monomeric aspartyl proteases evolved by gene duplication and fusion from a primordial homodimeric enzyme. Recent sequence analyses have suggested that such "fossil" dimeric aspartyl proteases are still encoded in the eukaryotic genome. We present evidence for retention of a dimeric aspartyl protease in eukaryotes. The X-ray crystal structure of a domain of the Saccharomyces cerevisiae protein Ddi1 shows that it is a dimer with a fold similar to that of the retroviral proteases. Furthermore, the double Asp-Thr-Gly-Ala amino acid sequence motif at the active site of HIV protease is found with identical geometry in the Ddi1 structure. However, the putative substrate binding groove is wider in Ddi1 than in the retroviral proteases, suggesting that Ddi1 accommodates bulkier substrates. Ddi1 belongs to a family of proteins known as the ubiquitin receptors, which have in common the ability to bind ubiquitinated substrates and the proteasome. Ubiquitin receptors contain an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain, but Ddi1 is the only representative in which the UBL and UBA domains flank an aspartyl protease-like domain. The remarkable structural similarity between the central domain of Ddi1 and the retroviral proteases, in the global fold and in active-site detail, suggests that Ddi1 functions proteolytically during regulated protein turnover in the cell.  相似文献   

17.
A proteomics approach to understanding protein ubiquitination   总被引:28,自引:0,他引:28  
There is a growing need for techniques that can identify and characterize protein modifications on a large or global scale. We report here a proteomics approach to enrich, recover, and identify ubiquitin conjugates from Saccharomyces cerevisiae lysate. Ubiquitin conjugates from a strain expressing 6xHis-tagged ubiquitin were isolated, proteolyzed with trypsin and analyzed by multidimensional liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for amino acid sequence determination. We identified 1,075 proteins from the sample. In addition, we detected 110 precise ubiquitination sites present in 72 ubiquitin-protein conjugates. Finally, ubiquitin itself was found to be modified at seven lysine residues providing evidence for unexpected diversity in polyubiquitin chain topology in vivo. The methodology described here provides a general tool for the large-scale analysis and characterization of protein ubiquitination.  相似文献   

18.
The Arabidopsis thaliana ecotype Columbia ubiquitin gene family consists of 14 members that can be divided into three types of ubiquitin genes; polyubiquitin genes, ubiquitin-like genes and ubiquitin extension genes. The isolation and characterization of eight ubiquitin sequences, consisting of four polyubiquitin genes and four ubiquitin-like genes, are described here, and their relationships to each other and to previously identified Arabidopsis ubiquitin genes were analyzed. The polyubiquitin genes, UBQ3, UBQ10, UBQ11 and UBQ14, contain tandem repeats of the 228-bp ubiquitin coding region. Together with a previously described polyubiquitin gene, UBQ4, they differ in synonymous substitutions, number of ubiquitin coding regions, number and nature of nonubiquitin C-terminal amino acid(s) and chromosomal location, dividing into two subtypes; the UBQ3/UBQ4 and UBQ10/UBQ11/UBQ14 subtypes. Ubiquitin-like genes, UBQ7, UBQ8, UBQ9 and UBQ12, also contain tandem repeats of the ubiquitin coding region, but at least one repeat per gene encodes a protein with amino acid substitutions. Nucleotide comparisons, K(s) value determinations and neighbor-joining analyses were employed to determine intra- and intergenic relationships. In general, the rate of synonymous substitution is too high to discern related repeats. Specific exceptions provide insight into gene relationships. The observed nucleotide relationships are consistent with previously described models involving gene duplications followed by both unequal crossing-over and gene conversion events.  相似文献   

19.
Ubiquitin is a post-translational modifier that is involved in cellular functions through its covalent attachment to target proteins. Ubiquitin can also be conjugated to itself at seven lysine residues and at its amino terminus to form eight linkage-specific polyubiquitin chains for individual cellular processes. The Lys63-linked polyubiquitin chain is recognized by tandem ubiquitin-interacting motifs (tUIMs) of Rap80 for the regulation of DNA repair. To understand the recognition mechanism between the Lys63-linked diubiquitin (K63-Ub2) and the tUIMs in solution, we determined the solution structure of the K63-Ub2:tUIMs complex by using NOE restraints and RDC data derived from NMR spectroscopy. The structure showed that the tUIMs adopts a nearly straight and single continuous α-helix, and the two ubiquitin units of the K63-Ub2 separately bind to each UIM motif. The interfaces are formed between Ile44-centered patches of the two ubiquitin units and the hydrophobic residues of the tUIMs. We also showed that the linker region between the two UIM motifs possesses a random-coil conformation in the free state, but undergoes the coil-to-helix transition upon complex formation, which simultaneously fixes the relative position of ubiquitin subunits. These data suggest that the relative position of ubiquitin subunits in the K63-Ub2:tUIMs complex is essential for linkage-specific binding of Rap80 tUIMs.  相似文献   

20.
Ubiquitin coding sequences were isolated from a human genomic library and two cDNA libraries. One human ubiquitin gene consists of 2055 nucleotides and codes for a polyprotein consisting of 685 amino acid residues. The polyprotein contains nine direct repeats of the ubiquitin amino acid sequence and the last ubiquitin sequence is extended with an additional valyl residue at the C-terminal end. No spacer sequences separate the ubiquitin repeats and the coding regions are not interrupted by intervening sequences. This particular gene is transcribed since cDNAs corresponding to the genomic sequence have been isolated. At least two more types of ubiquitin genes are encoded in the human genome, one coding for an ubiquitin monomer while another presumably codes for three or four direct repeats of the ubiquitin sequence. Human DNA contains many copies of the ubiquitin sequence. Ubiquitin is therefore encoded in the human genome as a multigene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号